We have demonstrated suppression of suprathermal ions from a colloidal microjet target plasma containing tin-dioxide (SnO2) nanoparticles irradiated by double laser pulses. We observed a significant decrease of the tin and oxygen ion signals in the charged-state-separated energy spectra when double laser pulses were irradiated. The peak energy of the singly ionized tin ions decreased from 9to3keV when a preplasma was produced. The decrease in the ion energy, considered as debris suppression, is attributed to the interaction between an expanding low-density preplasma and a main laser pulse.
Debris characteristics and their reduction have been investigated for a laser-produced plasma extreme ultraviolet source by using a colloidal jet target containing tin dioxide nanoparticles. The amounts of deposited debris on a witness plate were determined by total laser energy irradiated onto a target. In situ low-temperature (100°C) heating of a plate was effective to reduce the amounts of deposited debris, since colloidal debris was easily vaporized by the heat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.