The subfamily Geometrinae (Lepidoptera: Geometridae) includes many species called emerald moths. Based on our recent finding of novel polyenyl compounds, including a double bond at the 12-position from two geometrine species, Hemithea tritonaria and Thalassodes immissaria intaminata, (6Z,9Z,12Z)-6,9,12-trienes and (3Z,6Z,9Z,12Z)-3,6,9,12-tetraenes with a C 17 -C 20 straight chain were synthesized and analyzed by GC-MS. The 6,9,12-trienes, which were prepared by a double Wittig reaction between two alkanals and an ylide derived from (Z)-1,6-diiodo-3-hexene, characteristically produced fragment ions at m/z 79, 150, and M-98. The 3,6,9,12-tetraenes, which were prepared by a coupling between (Z)-3-alkenal and an ylide derived from (3Z,6Z)-1-iodo-3,6-nonadiene, showed fragment ions at m/z 79, 148, and M-96. These diagnostic ions were useful to distinguish these compounds from other known polyenyl pheromones, such as 4,6,9-and 6,9,11-trienes and 1,3,6,9-tetraenes. With reference to the GC-MS data, pheromone extracts of other species in Geometrinae inhabiting the Iriomote Islands were analyzed, and the 6,9,12-trienes were identified in the pheromone gland extracts of Pamphlebia rubrolimbraria rubrolimbraria and Maxates versicauda microptera. Furthermore, a field evaluation of the synthetic polyenes in a mixed forest of Tokyo revealed the following new male attractants for emerald moths: Idiochlora ussuriaria by a C 17 6,9,12-triene and Jodis lactearia by a C 20 3,6,9,12-tetraene, indicating the characteristic chemical structures of Geometrinae pheromones. On the other hand, through reexamination of the pheromone extract of H. tritonaria, (3E,6E)-α-farnesene was identified as an electrophysiologically active component in addition to the C 17 6,9,12-triene. The binary mixture attracted more males than the single component lure baited with the triene in the Iriomote Islands.