Insect pheromones are some of the most interesting natural products because they are utilized for interspecific communication between various insects, such as beetles, moths, ants, and cockroaches. A large number of compounds of many kinds have been identified as pheromone components, reflecting the diversity of insect species. While this review deals only with chiral methyl-branched pheromones, the chemical structures of more than one hundred non-terpene compounds have been determined by applying excellent analytical techniques. Furthermore, their stereoselective syntheses have been achieved by employing trustworthy chiral sources and ingenious enantioselective reactions. The information has been reviewed here not only to make them available for new research but also to understand the characteristic chemical structures of the chiral pheromones. Since biosynthetic studies are still limited, it might be meaningful to examine whether the structures, particularly the positions and configurations of the branched methyl groups, are correlated with the taxonomy of the pheromone producers and also with the function of the pheromones in communication systems.
Female moths of Lyclene dharma dharma (Arctiidae, Lithosiinae) produce a novel sex pheromone composed of three methyl-branched ketones (I-III) in a ratio of 2:1:1. In order to confirm the structure of III (6,14-dimethyl-2-octadecanone), a mixture of its four stereoisomers was synthesized via chain elongation by two Wittig reactions, starting from 1,7-hexanediol. GC-MS data of the synthetic III were satisfactorily coincident with those of the natural component. In addition to the racemic mixtures of I (6-methyl-2-octadecanone) and II (14-methyl-2-octadecanone), previously synthesized, the activity of III was evaluated in the Iriomote Islands, and effective male attraction was observed for the 2:1:1 mixture of I-III. This result indicates that the females do not produce only one stereoisomer for each component or that the response of the males is not disturbed by the other stereoisomers of natural isomers produced by the females. The field test also revealed that the two-component lure of I and II captured as many males as the mixture of I-III, while lures baited with two components in other combinations and with only one component scarcely exhibited any male attraction ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.