The administration of concanavalin A (Con A) induces a rapid severe injury of hepatocytes in mice. Although the Con A–induced hepatitis is considered to be an experimental model of human autoimmune hepatitis, the precise cellular and molecular mechanisms that induce hepatocyte injury remain unclear. Here, we demonstrate that Vα14 NKT cells are required and sufficient for induction of this hepatitis. Moreover, interleukin (IL)-4 produced by Con A–activated Vα14 NKT cells is found to play a crucial role in disease development by augmenting the cytotoxic activity of Vα14 NKT cells in an autocrine fashion. Indeed, short-term treatment with IL-4 induces an increase in the expression of granzyme B and Fas ligand (L) in Vα14 NKT cells. Moreover, Vα14 NKT cells from either perforin knock-out mice or FasL-mutant gld/gld mice fail to induce hepatitis, and hence perforin–granzyme B and FasL appear to be effector molecules in Con A–induced Vα14 NKT cell–mediated hepatocyte injury.
Janus kinases (Jaks) play an important role in signal transduction via cytokine receptors. Tyk2 is a Janus kinase, and we developed tyk2-deficient mice to study the requirement for tyk2 in vivo. Tyk2-deficient mice show no overt developmental abnormalities; however, they display a lack of responsiveness to a small amount of IFNalpha, although a high concentration of IFNalpha can fully transduce its signal even in the absence of tyk2. Furthermore, IL-12-induced T cell function is defective in these mice. In contrast, these mice respond normally to IL-6 and IL-10, both of which activate tyk2 in vitro. These observations demonstrate that tyk2 plays only a restricted role in mediating IFNalpha-dependent signaling while being required in mediating IL-12-dependent biological responses.
Differentiation of naive CD4 T cells into type 2 helper (Th2) cells is accompanied by chromatin remodeling ofTh2 cytokine gene loci. Hyperacetylation of histone H3 on nucleosomes associated with the interleukin (IL)-4, IL-13 and IL-5 genes was observed in developing Th2 cells but not in Th1 cells. Histone hyperacetylation on IL-5 gene-associated nucleosomes was Th2-specific but occurred with delayed kinetics, and hyperacetylation on RAD50 gene-associated nucleosomes was T cell antigen receptor stimulation-dependent but not Th2-specific. The induction of the Th2-specific histone hyperacetylation was STAT6-and GATA3-dependent, and interestingly, it was accompanied by the expression of intergenic transcripts within the IL-13 and IL-4 gene loci. A conserved GATA3 response element (CGRE) containing four GATA consensus sequences was identified 1.6 kbp upstream from the IL-13 gene, corresponding with the 5-border of the Th2-specific histone hyperacetylation region. The CGRE was shown to bind to GATA3, histone acetyltransferase complexes including CBP/p300, and RNA polymerase II. Also, the CGRE showed a significant enhancing effect on the Th2 cytokine gene promoters. Thus, the CGRE may play a crucial role for GATA3-mediated targeting and downstream spreading of core histone hyperacetylation within the IL-13 and IL-4 gene loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.