The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.
T he circadian clock is a molecular mechanism underlying endogenous, self-sustained oscillations with a period of Ϸ24 h, manifested in diverse physiological and metabolic processes (1-3). The most striking feature of circadian clock is its flexible yet robust response to various environmental conditions. For example, circadian periodicity varies with light intensity (4-6) while remaining robust over a wide range of temperatures (''temperature compensation'') (1, 3, 7-9). This flexible-yetrobust characteristic is evolutionarily conserved in organisms ranging from photosynthetic bacteria to warm-blooded mammals (3, 10-12), and has interested researchers from a broad range of disciplines. However, despite many genetic and molecular studies (13-22), the detailed biochemical mechanism underlying this characteristic remains poorly elucidated (3).The simplest explanation for this flexible-yet-robust property is that the key period-determining reactions are insensitive to temperature but responsive to other environmental conditions. Indeed, Pittendrigh proposed the existence of a temperatureinsensitive component in the clock system in 1954 (7), and in 1968, he and his colleagues demonstrated that both the wave form and the period of circadian oscillations are invariant with temperature (23). However, the idea of a temperatureinsensitive biochemical reaction is counterintuitive, as elementary chemical processes are highly temperature-sensitive. One exception is the cyanobacterial clock, in which temperatureinsensitive enzymatic reactions are observed (24,25). However, the cyanobacterial clock is quite distinct from other clock systems, and this biochemical mechanism has not been demonstrated in other clocks.Recently, a chemical-biological approach was proposed to help elucidate the basic processes underlying circadian clocks (26), and high-throughput screening of a large chemical compound library was performed (27). In this report, to analyze systematically the fundamental processes involved in determining the period length of mammalian clocks, we tested 1,260 pharmacologically active compounds for their effect on period length in mouse and human clock cell lines, and found 10 compounds that most markedly lengthened the period of both clock cell lines affected both the central and peripheral circadian clocks. Most compounds inhibited CKI or CKI␦ activity, suggesting that CKI /␦-dependent phosphorylation is an important period-determining process in the mammalian circadian clock. Surprisingly, the degradation rate of endogenous PER2, which is regulated by CKI -dependent phosphorylation (28) and probably by CKI␦-dependent phosphorylation, was temperatureinsensitive in the living clock cells, and the temperatureinsensitivity was preserved even for the in vitro CKI /␦-dependent phosphorylation of a synthetic peptide derived from PER2. These results suggest that this period-determining process is flexible in response to chemical perturbation yet robust in the face of temperature perturbations. Based on these findings, we prop...
Direct evidence for the requirement of delay in feedback repression in the mammalian circadian clock has been elusive. Cryptochrome 1 (Cry1), an essential clock component, displays evening-time expression and serves as a strong repressor at morning-time elements (E box/E' box). In this study, we reveal that a combination of day-time elements (D box) within the Cry1-proximal promoter and night-time elements (RREs) within its intronic enhancer gives rise to evening-time expression. A synthetic composite promoter produced evening-time expression, which was further recapitulated by a simple phase-vector model. Of note, coordination of day-time with night-time elements can modulate the extent of phase delay. A genetic complementation assay in Cry1(-/-):Cry2(-/-) cells revealed that substantial delay of Cry1 expression is required to restore circadian rhythmicity, and its prolonged delay slows circadian oscillation. Taken together, our data suggest that phase delay in Cry1 transcription is required for mammalian clock function.
The detailed molecular mechanisms underlying the regulation of sleep duration in mammals are still elusive. To address this challenge, we constructed a simple computational model, which recapitulates the electrophysiological characteristics of the slow-wave sleep and awake states. Comprehensive bifurcation analysis predicted that a Ca(2+)-dependent hyperpolarization pathway may play a role in slow-wave sleep and hence in the regulation of sleep duration. To experimentally validate the prediction, we generate and analyze 21 KO mice. Here we found that impaired Ca(2+)-dependent K(+) channels (Kcnn2 and Kcnn3), voltage-gated Ca(2+) channels (Cacna1g and Cacna1h), or Ca(2+)/calmodulin-dependent kinases (Camk2a and Camk2b) decrease sleep duration, while impaired plasma membrane Ca(2+) ATPase (Atp2b3) increases sleep duration. Pharmacological intervention and whole-brain imaging validated that impaired NMDA receptors reduce sleep duration and directly increase the excitability of cells. Based on these results, we propose a hypothesis that a Ca(2+)-dependent hyperpolarization pathway underlies the regulation of sleep duration in mammals.
Differentiation of naive CD4 T cells into type 2 helper (Th2) cells is accompanied by chromatin remodeling ofTh2 cytokine gene loci. Hyperacetylation of histone H3 on nucleosomes associated with the interleukin (IL)-4, IL-13 and IL-5 genes was observed in developing Th2 cells but not in Th1 cells. Histone hyperacetylation on IL-5 gene-associated nucleosomes was Th2-specific but occurred with delayed kinetics, and hyperacetylation on RAD50 gene-associated nucleosomes was T cell antigen receptor stimulation-dependent but not Th2-specific. The induction of the Th2-specific histone hyperacetylation was STAT6-and GATA3-dependent, and interestingly, it was accompanied by the expression of intergenic transcripts within the IL-13 and IL-4 gene loci. A conserved GATA3 response element (CGRE) containing four GATA consensus sequences was identified 1.6 kbp upstream from the IL-13 gene, corresponding with the 5-border of the Th2-specific histone hyperacetylation region. The CGRE was shown to bind to GATA3, histone acetyltransferase complexes including CBP/p300, and RNA polymerase II. Also, the CGRE showed a significant enhancing effect on the Th2 cytokine gene promoters. Thus, the CGRE may play a crucial role for GATA3-mediated targeting and downstream spreading of core histone hyperacetylation within the IL-13 and IL-4 gene loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.