T he circadian clock is a molecular mechanism underlying endogenous, self-sustained oscillations with a period of Ϸ24 h, manifested in diverse physiological and metabolic processes (1-3). The most striking feature of circadian clock is its flexible yet robust response to various environmental conditions. For example, circadian periodicity varies with light intensity (4-6) while remaining robust over a wide range of temperatures (''temperature compensation'') (1, 3, 7-9). This flexible-yetrobust characteristic is evolutionarily conserved in organisms ranging from photosynthetic bacteria to warm-blooded mammals (3, 10-12), and has interested researchers from a broad range of disciplines. However, despite many genetic and molecular studies (13-22), the detailed biochemical mechanism underlying this characteristic remains poorly elucidated (3).The simplest explanation for this flexible-yet-robust property is that the key period-determining reactions are insensitive to temperature but responsive to other environmental conditions. Indeed, Pittendrigh proposed the existence of a temperatureinsensitive component in the clock system in 1954 (7), and in 1968, he and his colleagues demonstrated that both the wave form and the period of circadian oscillations are invariant with temperature (23). However, the idea of a temperatureinsensitive biochemical reaction is counterintuitive, as elementary chemical processes are highly temperature-sensitive. One exception is the cyanobacterial clock, in which temperatureinsensitive enzymatic reactions are observed (24,25). However, the cyanobacterial clock is quite distinct from other clock systems, and this biochemical mechanism has not been demonstrated in other clocks.Recently, a chemical-biological approach was proposed to help elucidate the basic processes underlying circadian clocks (26), and high-throughput screening of a large chemical compound library was performed (27). In this report, to analyze systematically the fundamental processes involved in determining the period length of mammalian clocks, we tested 1,260 pharmacologically active compounds for their effect on period length in mouse and human clock cell lines, and found 10 compounds that most markedly lengthened the period of both clock cell lines affected both the central and peripheral circadian clocks. Most compounds inhibited CKI or CKI␦ activity, suggesting that CKI /␦-dependent phosphorylation is an important period-determining process in the mammalian circadian clock. Surprisingly, the degradation rate of endogenous PER2, which is regulated by CKI -dependent phosphorylation (28) and probably by CKI␦-dependent phosphorylation, was temperatureinsensitive in the living clock cells, and the temperatureinsensitivity was preserved even for the in vitro CKI /␦-dependent phosphorylation of a synthetic peptide derived from PER2. These results suggest that this period-determining process is flexible in response to chemical perturbation yet robust in the face of temperature perturbations. Based on these findings, we prop...
Clock proteins govern circadian physiology and their function is regulated by various mechanisms. Here we demonstrate that Casein kinase (CK)-2alpha phosphorylates the core circadian regulator BMAL1. Gene silencing of CK2alpha or mutation of the highly conserved CK2-phosphorylation site in BMAL1, Ser90, result in impaired nuclear BMAL1 accumulation and disruption of clock function. Notably, phosphorylation at Ser90 follows a rhythmic pattern. These findings reveal that CK2 is an essential regulator of the mammalian circadian system.
Background : Recent discoveries of clock proteins have unveiled an important part of the mammalian circadian clock mechanism. However, the molecular clockwork that cause these fundamental feedback loops to stably oscillate with a ∼ ∼ ∼ ∼ 24 h-periodicity remain unclear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.