The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.
Direct evidence for the requirement of transcriptional feedback repression in circadian clock function has been elusive. Here, we developed a molecular genetic screen in mammalian cells to identify mutants of the circadian transcriptional activators CLOCK and BMAL1, which were uncoupled from CRYPTOCHROME (CRY)-mediated transcriptional repression. Notably, mutations in the PER-
T he circadian clock is a molecular mechanism underlying endogenous, self-sustained oscillations with a period of Ϸ24 h, manifested in diverse physiological and metabolic processes (1-3). The most striking feature of circadian clock is its flexible yet robust response to various environmental conditions. For example, circadian periodicity varies with light intensity (4-6) while remaining robust over a wide range of temperatures (''temperature compensation'') (1, 3, 7-9). This flexible-yetrobust characteristic is evolutionarily conserved in organisms ranging from photosynthetic bacteria to warm-blooded mammals (3, 10-12), and has interested researchers from a broad range of disciplines. However, despite many genetic and molecular studies (13-22), the detailed biochemical mechanism underlying this characteristic remains poorly elucidated (3).The simplest explanation for this flexible-yet-robust property is that the key period-determining reactions are insensitive to temperature but responsive to other environmental conditions. Indeed, Pittendrigh proposed the existence of a temperatureinsensitive component in the clock system in 1954 (7), and in 1968, he and his colleagues demonstrated that both the wave form and the period of circadian oscillations are invariant with temperature (23). However, the idea of a temperatureinsensitive biochemical reaction is counterintuitive, as elementary chemical processes are highly temperature-sensitive. One exception is the cyanobacterial clock, in which temperatureinsensitive enzymatic reactions are observed (24,25). However, the cyanobacterial clock is quite distinct from other clock systems, and this biochemical mechanism has not been demonstrated in other clocks.Recently, a chemical-biological approach was proposed to help elucidate the basic processes underlying circadian clocks (26), and high-throughput screening of a large chemical compound library was performed (27). In this report, to analyze systematically the fundamental processes involved in determining the period length of mammalian clocks, we tested 1,260 pharmacologically active compounds for their effect on period length in mouse and human clock cell lines, and found 10 compounds that most markedly lengthened the period of both clock cell lines affected both the central and peripheral circadian clocks. Most compounds inhibited CKI or CKI␦ activity, suggesting that CKI /␦-dependent phosphorylation is an important period-determining process in the mammalian circadian clock. Surprisingly, the degradation rate of endogenous PER2, which is regulated by CKI -dependent phosphorylation (28) and probably by CKI␦-dependent phosphorylation, was temperatureinsensitive in the living clock cells, and the temperatureinsensitivity was preserved even for the in vitro CKI /␦-dependent phosphorylation of a synthetic peptide derived from PER2. These results suggest that this period-determining process is flexible in response to chemical perturbation yet robust in the face of temperature perturbations. Based on these findings, we prop...
The identification of molecular networks at the system level in mammals is accelerated by next-generation mammalian genetics without crossing, which requires both the efficient production of whole-body biallelic knockout (KO) mice in a single generation and high-performance phenotype analyses. Here, we show that the triple targeting of a single gene using the CRISPR/Cas9 system achieves almost perfect KO efficiency (96%-100%). In addition, we developed a respiration-based fully automated non-invasive sleep phenotyping system, the Snappy Sleep Stager (SSS), for high-performance (95.3% accuracy) sleep/wake staging. Using the triple-target CRISPR and SSS in tandem, we reliably obtained sleep/wake phenotypes, even in double-KO mice. By using this system to comprehensively analyze all of the N-methyl-D-aspartate (NMDA) receptor family members, we found Nr3a as a short-sleeper gene, which is verified by an independent set of triple-target CRISPR. These results demonstrate the application of mammalian reverse genetics without crossing to organism-level systems biology in sleep research.
AMMALIAN circadian clock is a complex and dynamic system consisting of complicatedly integrated regulatory loops and displaying the various dynamic behaviors including i) endogenous oscillation with about 24-hour period, ii) entrainment to the external environmental changes, and iii) temperature compensation over the wide range of temperature.The logic of circadian clock is difficult to elucidate without 1) comprehensive identification of network structure 1-3 , 2) prediction and validation based on measurement and perturbation of its behavior 4 , and 3) design and implementation of artificial networks of identified structure and observed dynamics 5 . First, we comprehensively determined the transcriptional circuits composed of 20 transcription factors, and three type of DNA elements 1,2 . The following quantitative measurement, and static and dynamic perturbation of clock circuits revealed a topological and functional vulnerability in mammalian clocks 3,4 . Second, to derive and prove transcriptional logic of mammalian circadian clocks, we develop mammalian cell culture system, where we can design and implement artificial transcriptional circuits to physically simulate natural circadian transcriptional circuits. Using this system, we report transcriptional logic to generate day-time and night-time transcriptional output as well as diverse transcriptional outputs with various timings 5 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.