A novel method for fabricating trench structures on GaN was developed. A smooth non-polar (1100) plane was obtained by wet etching using tetramethylammonium hydroxide (TMAH) as the etchant. A U-shape trench with the (1100) plane side walls was formed with dry etching and the TMAH wet etching. A U-shape trench gate metal oxide semiconductor field-effect transistor (MOSFET) was also fabricated using the novel etching technology. This device has the excellent normally-off operation of drain current–gate voltage characteristics with the threshold voltage of 10 V. The drain breakdown voltage of 180 V was obtained. The results indicate that the trench gate structure can be applied to GaN-based transistors.
We fabricated a vertical insulated gate AlGaN/GaN heterojunction field-effect transistor (HFET), using a free-standing GaN substrate. This HFET has apertures through which the electron current vertically flows. These apertures were formed by dry etching the p-GaN layer below the gate electrodes and regrowing n À -GaN layer without mask. The HFET exhibited a specific on-resistance of as low as 2.6 mÁcm 2 with a threshold voltage of À16 V. This HFET would be a prototype of a GaN-based high-power switching device.
The source of carrier compensation in metalorganic vapor phase epitaxy (MOVPE)-grown n-type GaN was quantitatively investigated by Hall-effect measurement, deep-level transient spectroscopy, and secondary ion mass spectrometry. These analysis techniques revealed that there were at least three different compensation sources. The carrier compensation for samples with donor concentrations below 5 × 1016 cm−3 can be explained by residual carbon and electron trap E3 (EC − 0.6 eV). For samples with higher donor concentrations, we found a proportional relationship between donor concentration and compensating acceptor concentration, which resulted from a third source of compensation. This is possibly due to the self-compensation effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.