Herein, a physical reservoir device that uses faradaic currents generated by redox reactions of metal ions in ionic liquids was developed. Synthetic time-series data consisting of randomly arranged binary number sequences ("1" and "0") were applied as isoscelestriangular voltage pulses with positive and negative voltage heights, respectively, and the effects of the faradaic current on short-term memory and parity-check task accuracies were verified. The current signal for the first half of the triangular voltage-pulse period, which contained a much higher faradaic current component compared to that of the second half of the triangular voltage-pulse period, enabled higher short-term memory task accuracy. Furthermore, when parity-check tasks were performed using a faradaic current generated by asymmetric triangular voltage-pulse levels of 1 and 0, the parity-check task accuracy was approximately eight times higher than that of the symmetric triangular voltage pulse in terms of the correlation coefficient between the output signal and target data. These results demonstrate the advantage of the faradaic current on both the short-term memory characteristics and nonlinear conversion capabilities and are expected to provide guidance for designing and controlling various physical reservoir devices that utilize electrochemical reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.