Naphthalenesulfonamides such as N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7) are potent calmodulin (CaM) antagonists and act upon several protein kinases at higher concentration. When the naphthalene ring was replaced by isoquinoline, the derivatives were no longer CaM antagonists but retained the ability to inhibit protein kinases, and some of the derivatives exhibited selective inhibition toward a certain protein kinase. cAMP-dependent, cGMP-dependent, and Ca2+-phospholipid-dependent (protein kinase C) protein kinases were inhibited significantly by addition of 10(-6) M N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (H-8) and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7). H-8 was the most active of the inhibitors in this series and inhibited more markedly cyclic nucleotide dependent protein kinases, than other kinases, while the derivative with the sulfonylpiperazine residue (H-7) was the most potent in inhibiting protein kinase C. Apparent Ki values of H-8 were 0.48 and 1.2 microM for cGMP-dependent and cAMP-dependent protein kinases, respectively, and the Ki value of H-7 for protein kinase C was 6 microM. Both the holoenzyme and the catalytic subunit (or fragment), which is active without an enzyme activator, are susceptible to these compounds with a similar concentration dependency, thereby indicating that the inhibitory effect is attributed to the direct interaction of the compound with the active center of the enzyme but not with the enzyme activator. The inhibitions were freely reversible and of the competitive type with respect to ATP and of the noncompetitive type with respect to the phosphate acceptor.(ABSTRACT TRUNCATED AT 250 WORDS)
Cyclin-dependent kinases (cdk) play an essential role in the intracellular control of the cell division cycle (cdc). These kinases and their regulators are frequently deregulated in human tumours. Enzymatic screening has recently led to the discovery of specific inhibitors of cyclin-dependent kinases, such as butyrolactone I, flavopiridol and the purine olomoucine. Among a series of C2, N6, N9-substituted adenines tested on purified cdc2kyclin B, 2-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (roscovitine) displays high efficiency and high selectivity towards some cyclin-dependent kinases. The kinase specificity of roscovitine was investigated with 25 highly purified kinases (including protein kinase A, G and C isoforms, myosin light-chain kinase, casein kinase 2, insulin receptor tyrosine kinase, c-src, v-abl). Most kinases are not significantly inhibited by roscovitine. cdc2kyclin B, cdk2kyclin A, cdk2lcyclin E and cdkSlp35 only are substantially inhibited (IC,, values of 0.65, 0.7, 0.7 and 0.2 pM, respectively). cdk4kyclin D1 and cdk6kyclin D2 are very poorly inhibited by roscovitine (IC,, > 100 pM). Extracellular regulated kinases erkl and erk2 are inhibited with an IC,, of 34 pM and 14 pM, respectively. Roscovitine reversibly arrests starfish oocytes and sea urchin embryos in late prophase. Roscovitine inhibits in vitro M-phase-promoting factor activity and in vitro DNA synthesis in Xenopus egg extracts. It blocks progesterone-induced oocyte maturation of Xenopus oocytes and in vivo phosphorylation of the elongation factor eEF-1. Roscovitine inhibits the proliferation of mammalian cell lines with an average IC,,] of 16 pM. In the presence of roscovitine L1210 cells arrest in G1 and accumulate in G2. In vivo phosphorylation of vimentin on Ser55 by cdc2kyclin B is inhibited by roscovitine. Through its unique selectivity for some cyclin-dependent kinases, roscovitine provides a useful antimitotic reagent for cell cycle studies and may prove interesting to control cells with deregulated cdc2, cdk2 or cdk5 kinase activities.
Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the phosphorylation state of Rho-kinase substrates including MLC and ERM family proteins in vivo in a cooperative manner.
Formation of one procentriole next to each pre-existing centriole is essential for centrosome duplication, robust bipolar spindle assembly and maintenance of genome integrity. However, the mechanisms maintaining strict control over centriole copy number are incompletely understood. Here we show that Plk4 and STIL, the key regulators of centriole formation, form a protein complex that provides a scaffold for recruiting HsSAS-6, a major component of the centriolar cartwheel, at the onset of procentriole formation. Furthermore, we demonstrate that phosphorylation of STIL by Plk4 facilitates the STIL/HsSAS-6 interaction and centriolar loading of HsSAS-6. We also provide evidence that negative feedback by centriolar STIL regulates bimodal centriolar distribution of Plk4 and seemingly restricts occurrence of procentriole formation to one site on each parental centriole. Overall, these findings suggest a mechanism whereby coordinated action of three critical factors ensures formation of a single procentriole per parental centriole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.