BackgroundGenes encoded in vertebrate mitochondrial DNAs are transcribed as a polycistronic transcript for both strands, which is later processed into individual mRNAs, rRNAs and tRNAs, followed by modifications, such as polyadenylation at the 3′ end of mRNAs. Although mechanisms of the mitochondrial transcription and RNA processing have been extensively studied using some model organisms, structural variability of mitochondrial mRNAs across different groups of vertebrates is poorly understood. We conducted the high-throughput RNA sequencing to identify major polyadenylation sites for mitochondrial mRNAs in the Japanese grass lizard, Takydromus tachydromoides and compared the polyadenylation profiles with those identified similarly for 23 tetrapod species, featuring sauropsid taxa (reptiles and birds).ResultsAs compared to the human, a major polyadenylation site for the NADH dehydrogenase subunit 5 mRNA of the grass lizard was located much closer to its stop codon, resulting in considerable truncation of the 3′ untranslated region for the mRNA. Among the other sauropsid taxa, several distinct polyadenylation profiles from the human counterpart were found for different mRNAs. They included various truncations of the 3′ untranslated region for NADH dehydrogenase subunit 5 mRNA in four taxa, bird-specific polyadenylation of the light-strand-transcribed NADH dehydrogenase subunit 6 mRNA, and the combination of the ATP synthase subunit 8/6 mRNA with a neighboring mRNA into a tricistronic mRNA in the side-necked turtle Pelusios castaneus. In the last case of P. castaneus, as well as another example for NADH dehydrogenase subunit 1 mRNAs of some birds, the association between the polyadenylation site change and the gene overlap was highlighted. The variations in the polyadenylation profile were suggested to have arisen repeatedly in diverse sauropsid lineages. Some of them likely occurred in response to gene rearrangements in the mitochondrial DNA but the others not.ConclusionsThese results demonstrate structural variability of mitochondrial mRNAs in sauropsids. The efficient and comprehensive characterization of the mitochondrial mRNAs will contribute to broaden our understanding of their structural and functional evolution.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4080-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.