Thermally activated delayed fluorescence (TADF) molecules are gathering attention for their potential to boost the efficiency of organic light-emitting diodes without precious metals. Minimizing the energy difference between the S 1 and T 1 states (ΔE ST ) is a fundamental strategy to accelerate reverse intersystem crossing (RISC). However, the lack of microscopic understanding of the process prevents adequate design strategies for efficient TADF materials. Here, we focused on four carbazole-benzonitrile (Cz-BN) derivatives that possess identical ΔE ST but distinct TADF activities. We systematically compared their geometrical dynamics upon photoexcitation using time-resolved infrared (TR-IR) vibrational spectroscopy in conjunction with quantum chemical calculations. We found that the most TADF-active molecule, 4CzBN, shows little structural change after photoexcitation, while the TADF-inactive molecules show relatively large deformation upon S 1 −T 1 conversion. This implies that the suppression of structural deformation is critical for minimizing the activation energy barrier for RISC in cases of the Cz-BN derivatives.
Efficient triplet-triplet annihilation-based photon upconversion (TTA-UC) from visible to UV light without using heavy metals is still a challenging task. Here we achieve a record-high TTA-UC efficiency of 20.3% among...
The electronic structure and photophysics of the recently designed organic direct singlet harvesting (DSH) molecule are explored, in which donor (D) and acceptor (A) are held at distance by two bridges. One of the bridges is functionalized with fluorene. This structure leads to an ultrasmall singlet–triplet energy gap of ∆E (S1−T1) ≈ 10 cm−1 (≈1 meV) between the charge transfer states 1,3CT and shows an energetically close‐lying 3ππ* state localized on fluorene. Dielectric constant variation of the environment leads to state crossing of 3ππ* and 1,3CT near ε = 2.38 (toluene), as confirmed through time‐dependent density functional theory (DFT) and state‐specific DFT/polarizable continuum model excited‐state calculations. Transient absorption (TA) and time‐resolved luminescence in the femtosecond to microsecond regimes show rates of intersystem crossing (ISC) and reverse ISC (rISC) of >109 s–1. Thus, a strictly mono‐exponential short‐lived photo‐luminescence decay (431 ns) is observed, revealing that rISC is no longer the bottleneck responsible for long thermally activated delayed fluorescence. Ultrafast TA displays a time constant of ≈700 fs, representing the relaxation time of DSH and its solvent environment to the relaxed 1CT state with a molecular dipole moment of ≈40 D. Importantly, OLED devices, emitting sky‐blue light and showing high external quantum efficiency of 19%, confirm that singlet and triplet excitons are harvested efficiently.
Thermally activated triplet-to-singlet upconversion is attractive from both fundamental science and exciton engineering, but controlling the process from molecular configuration is still unrevealed. In particular, the flexibility of the freedom of molecular geometry is of major importance to understand the kinetics of the phonon-induced upconversion. Here, we focus on two linearly connected donor–acceptor molecules, 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) and hexamethylazatriangulene-2,4,6-triphenyl-1,3,5-triazine (HMAT-TRZ), as the model system. While DMAC-TRZ possesses a rotational degree of freedom in the dihedral angle between the donor and acceptor moieties, i.e., C–N bond in tertiary amine, the rotation is structurally restricted in HMAT-TRZ. The rotationally flexible DMAC-TRZ showed significant triplet-to-singlet upconversion caused by thermal activation. On the other hand, the rotation-restricted HMAT-TRZ showed negligible thermal upconversion efficiency. We elaborate on the origin of the photophysical properties from the viewpoint of the geometries in the excited states using time-resolved infrared spectroscopy and quantum chemical calculations. We uncovered that the structural restriction of the intramolecular flexibility significantly affects the optimized geometry and phonon modes coupled to the spin conversion. As a result of the rotation restriction, the spin flipping in HMAT-TRZ was coupled to bending motion instead of the rotation. In contrast, the free rotation fluctuation in the DMAC-TRZ mixes local-excitation and charge-transfer characters, leading to successful activation of the delayed fluorescence as well as the reverse intersystem crossing. Our discovery sheds light on the mechanism of the triplet-to-singlet upconversion, providing a microscopic strategy to control the optoelectronic properties from a molecular viewpoint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.