While many studies have been done on triplet–triplet annihilation‐based photon upconversion (TTA‐UC) to produce visible light with high efficiency, the efficient TTA‐UC from visible to UV light, despite its importance for a variety of solar and indoor applications, remains a challenging task. Here, we report the highest visible‐to‐UV TTA‐UC efficiency of 20.5 % based on the discovery of an excellent UV emitter, 1,4‐bis((triisopropylsilyl)ethynyl)naphthalene (TIPS‐Nph). TIPS‐Nph is an acceptor with desirable features of high fluorescence quantum yield and high singlet generation efficiency by TTA. TIPS‐Nph has a low enough triplet energy level to be sensitized by Ir(C6)2(acac), a superior donor that does not quench UV emission. The combination of TIPS‐Nph and Ir(C6)2(acac) realizes the efficient UV light production even with weak light sources such as an AM 1.5 solar simulator and room LEDs.
Perovskite solar cells have emerged as the next-generation high-efficiency solar cell, but their absorption is mostly limited to the visible (vis) range. One possible solution is to integrate near-infrared (NIR)-to-vis photon upconversion (UC). Herein, we show the first example of endowing perovskite solar cells with NIR sensitivity by using solid films showing NIR-to-vis UC based on triplet-triplet annihilation (TTA). A high TTA-UC efficiency of 4.1 � 0.3 % at an excitation intensity of 125 W/cm 2 is achieved by sensitizing a rubrene (acceptor) triplet with an osmium (Os) complex donor having singlet-to-triplet (SÀ T) absorption in the NIR range, and by increasing the fluorescence quantum yield through energy harvesting to a highly fluorescent collector. In particular, our spectroscopic studies indicate that the upconverted acceptor singlet energy is almost selectively transferred to the collector rather than being quenched by the donor. By attaching the TTA-UC film behind a semi-transparent perovskite solar cell, a photocurrent generation is observed under excitation at 938 nm.
For the consistent development of the field of photon upconversion via triplet−triplet annihilation (TTA-UC), it is pivotal to know the true quantum yield of TTA-UC emission. Although TTA-UC quantum yields have been determined by common relative measurements using quantum yield standards, there is still a discrepancy between the reported values even for the benchmark sensitizer−emitter pair of platinum(II) octaethylporphyrin (PtOEP) and 9,10-diphenylanthracene (DPA). Here, to resolve this situation, we show a method to obtain the absolute quantum yield of TTA-UC photoluminescence. The difficulty in obtaining absolute TTA-UC quantum yield by the integrating sphere measurement is to accurately calibrate the contribution of reabsorbed upconverted emission by triplet sensitizers. The reabsorption correction is successfully carried out by comparing sensitizer phosphorescence with and without the integrating sphere. An absolute TTA-UC quantum yield of the PtOEP−DPA pair is obtained as 36%, which shows a good agreement with the relative TTA-UC quantum yield. An absolute TTA-UC quantum yield of another red-to-blue TTA-UC pair, platinum(II) meso-tetraphenyltetrabenzoporphyrin (PtTPBP) and 2,5,8,11-tetra-tert-butylperylene (TTBP), is obtained as 27%. These absolute TTA-UC quantum yields can be used as certified values to check the measurement setup and sample condition for determining relative TTA-UC quantum yields in each laboratory.
Efficient triplet-triplet annihilation-based photon upconversion (TTA-UC) from visible to UV light without using heavy metals is still a challenging task. Here we achieve a record-high TTA-UC efficiency of 20.3% among...
While many studies have been done on triplet–triplet annihilation‐based photon upconversion (TTA‐UC) to produce visible light with high efficiency, the efficient TTA‐UC from visible to UV light, despite its importance for a variety of solar and indoor applications, remains a challenging task. Here, we report the highest visible‐to‐UV TTA‐UC efficiency of 20.5 % based on the discovery of an excellent UV emitter, 1,4‐bis((triisopropylsilyl)ethynyl)naphthalene (TIPS‐Nph). TIPS‐Nph is an acceptor with desirable features of high fluorescence quantum yield and high singlet generation efficiency by TTA. TIPS‐Nph has a low enough triplet energy level to be sensitized by Ir(C6)2(acac), a superior donor that does not quench UV emission. The combination of TIPS‐Nph and Ir(C6)2(acac) realizes the efficient UV light production even with weak light sources such as an AM 1.5 solar simulator and room LEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.