The appropriate clinical applications of pneumococcal polysaccharide vaccines against recent increases in antimicrobial resistant Streptococcus pneumoniae (S. pneumoniae) urgently require accurate analytical methodologies for determining and characterizing the serotypes. The results of current immunological determinations of serotypes with anti-capsular polysaccharide-specific sera are difficult to interpret in terms of quellung changes of the pneumococci. In this study, we applied the multiplex PCR technique for the rapid identification of pneumococci and simultaneous rapid determinations of their serotypes and genotypes that directly correlated with antimicrobial susceptibilities from nasopharyngeal secretions (NPS). Serogroups 6, 19F and 23F were the predominant capsular types of S. pnuemoniae in the NPS samples. Strains of serotypes 19F and 23F frequently had mutations in pbp1a, pbp2x and pbp2b and expressed ermB and mefA; they also were mostly resistant to both penicillin G (PCG) and clarithromycin (CAM). Two NPS samples contained the strain of serotype 19F together with the strain of serotype 23F, although only the strain of serotype 19F was identified by a conventional bacterial culture. Pneumococci were identified in six NPS samples and their serotypes determined by the multiplex PCR, while a conventional bacterial culture failed to identify the pathogens. Our findings suggest that PCR-based serotyping and genotyping can provide an accurate and rapid distribution of pneumococcal serotypes and antimicrobial resistance. The relatively minor populations in the nasopharynx may be determined using molecular techniques.
Objective: To evaluate the resistances of Streptococcus pneumoniae to β-lactams developed by stepwise alterations in high-molecular-weight penicillin-binding proteins (PBPs) with a reduced binding affinity of β-lactams. Among the numerous mutations in pbp genes that alter the affinity for β-lactams, the decreased affinity of PBP1A, 2X and 2B is especially important in the development of resistances to β-lactams. Study Design: Retrospective review. Methods:In this study, we investigated the mutations in pbp1a, pbp2x, and pbp2b genes evaluated by polymerase chain reaction (PCR) in 866 pneumococcal isolates collected from the nasopharynx of Japanese children with acute otitis media. Results: 210 strains (24.3%) exhibited no mutations in the three pbp genes. 333 strains (38.5%) had mutations in the three pbp genes, 78 (9.0%) in two pbp genes, whereas 245 (28.3%) displayed mutations in only one pbp gene. Among the 656 strains with mutations in pbp genes, 620 (94.5%) strains had mutations in pbp2x. The annual prevalence of antimicrobial-resistant S. pneumoniae showed a gradual increase in strains with mutations in the three pbp genes and a parallel decrease in strains without mutations. Conclusions: PCR-based genotyping can characterize the antimicrobial resistances in pneumococci along with minimal inhibitory concentrations (MICs). Physicians should pay attention to the recent increase in antimicrobial-resistant S. pneumoniae when treating pediatric acute otitis media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.