Basophils express major histocompatibility complex class II, CD80 and CD86 and produce interleukin 4 (IL-4) in various conditions. Here we show that when incubated with IL-3 and antigen or complexes of antigen and immunoglobulin E (IgE), basophils internalized, processed and presented antigen as complexes of peptide and major histocompatibility complex class II and produced IL-4. Intravenous administration of ovalbumin-pulsed basophils into naive mice 'preferentially' induced the development of naive ovalbumin-specific CD4+ T cells into T helper type 2 (T(H)2) cells. Mice immunized in this way, when challenged by intravenous administration of ovalbumin, promptly produced ovalbumin-specific IgG1 and IgE. Finally, intravenous administration of IgE complexes rapidly induced T(H)2 cells only in the presence of endogenous basophils, which suggests that basophils are potent antigen-presenting cells that 'preferentially' augment T(H)2-IgE responses by capturing IgE complex.
IL-12 and IL-18 synergistically enhance IFN-γ mRNA transcription by activating STAT4 and AP-1, respectively. However, it is still unknown how STAT4/AP-1 elicit IFN-γ promoter activation. Using an IL-12/IL-18-responsive T cell clone, we investigated the mechanisms underlying synergistic enhancement of IFN-γ mRNA expression induced by these two cytokines. Synergy was observed in a reporter gene assay using an IFN-γ promoter fragment that binds AP-1, but not STAT4. An increase in c-Jun, a component of AP-1, in the nuclear compartment was elicited by stimulation with either IL-12 or IL-18, but accumulation of serine-phosphorylated c-Jun was induced only by IL-18 capable of activating c-Jun N-terminal kinase. The binding of AP-1 to the relevant promoter sequence depended on the presence of STAT4. STAT4 bound with c-Jun, and a phosphorylated c-Jun-STAT4 complex most efficiently interacted with the AP-1-relevant promoter sequence. Enhanced cobinding of STAT4 and c-Jun to the AP-1 sequence was also observed when activated lymph node T cells were exposed to IL-12 plus IL-18. These results show that STAT4 up-regulates AP-1-mediated IFN-γ promoter activation without directly binding to the promoter sequence, providing a mechanistic explanation for IL-12/IL-18-induced synergistic enhancement of IFN-γ gene expression.
The wiring patterns among various types of neurons via specific synaptic connections are the basis of functional logic employed by the brain for information processing. This study introduces a powerful method of analyzing the neuronal connectivity patterns by delivering a tracer selectively to specific types of neurons while simultaneously transsynaptically labeling their target neurons. We developed a novel genetic approach introducing cDNA for a plant lectin, wheat germ agglutinin (WGA), as a transgene under the control of specific promoter elements. Using this method, we demonstrate three examples of visualization of specific transsynaptic neural pathways: the mouse cerebellar efferent pathways, the mouse olfactory pathways, and the Drosophila visual pathways. This strategy should greatly facilitate studies on the anatomical and functional organization of the developing and mature nervous system.
Signal Transducer and Activator of Transcription (STAT) proteins are a family of latent cytoplasmic transcription factors that are activated by tyrosine phosphorylation after cytokine stimulation. One mechanism by which STAT signaling is regulated is by dephosphorylation through the action of protein tyrosine phosphatases (PTP). We have identified PTP-Basophil like (PTP-BL) as a STAT PTP. PTP-BL dephosphorylates STAT proteins in vitro and in vivo, resulting in attenuation of STAT-mediated gene activation. In CD4(+) T cells, PTP-BL deficiency leads to increased and prolonged activation of STAT4 and STAT6, and consequently enhanced T helper 1 (Th1) and Th2 cell differentiation. Taken together, our findings demonstrate that PTP-BL is a physiologically important negative regulator of the STAT signaling pathway.
IL-12 and IL-18 are both proinflammatory cytokines that contribute to promoting Th1 development and IFN-γ expression. However, neither IL-12R nor IL-18R is expressed as a functional complex on most resting T cells. This study investigated the molecular mechanisms underlying the induction of an IL-18R complex in T cells. Resting T cells expressed IL-18Rα chains but did not exhibit IL-18 binding sites as detected by incubation with rIL-18 followed by anti-IL-18 Ab, suggesting a lack of IL-18Rβ expression in resting T cells. Although they also failed to express IL-12R, stimulation with anti-CD3 plus anti-CD28 generated IL-12R. Exposure of these cells to IL-12 led not only to up-regulation of IL-18Rα expression but also to induction of IL-18R binding sites on both CD4+ and CD8+ T cells concomitant with IL-18Rβ mRNA expression. The IL-18 binding site represented a functional IL-18R complex capable of exhibiting IL-18 responsiveness. IL-12 induction of an IL-18R complex and IL-18Rβ mRNA expression was not observed in STAT4-deficient (STAT4−/−) T cells and was substantially decreased in IFN-γ−/− T cells. However, the failure of STAT4−/− T cells to induce an IL-18R complex was not corrected by IFN-γ. These results indicate that STAT4 and IFN-γ play an indispensable role and a role as an amplifying factor, respectively, in IL-12 induction of the functional IL-18R complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.