This report, issued by the ACVIM Specialty of Cardiology consensus panel, revises guidelines for the diagnosis and treatment of myxomatous mitral valve disease (MMVD, also known as endocardiosis and degenerative or chronic valvular heart disease) in dogs, originally published in 2009. Updates were made to diagnostic, as well as medical, surgical, and dietary treatment recommendations. The strength of these recommendations was based on both the quantity and quality of available evidence supporting diagnostic and therapeutic decisions. Management of MMVD before the onset of clinical signs of heart failure has changed substantially compared with the 2009 guidelines, and new strategies to diagnose and treat advanced heart failure and pulmonary hypertension are reviewed.
BackgroundPimobendan is effective in treatment of dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD). Its effect on dogs before the onset of CHF is unknown.Hypothesis/ObjectivesAdministration of pimobendan (0.4–0.6 mg/kg/d in divided doses) to dogs with increased heart size secondary to preclinical MMVD, not receiving other cardiovascular medications, will delay the onset of signs of CHF, cardiac‐related death, or euthanasia.Animals360 client‐owned dogs with MMVD with left atrial‐to‐aortic ratio ≥1.6, normalized left ventricular internal diameter in diastole ≥1.7, and vertebral heart sum >10.5.MethodsProspective, randomized, placebo‐controlled, blinded, multicenter clinical trial. Primary outcome variable was time to a composite of the onset of CHF, cardiac‐related death, or euthanasia.ResultsMedian time to primary endpoint was 1228 days (95% CI: 856–NA) in the pimobendan group and 766 days (95% CI: 667–875) in the placebo group (P = .0038). Hazard ratio for the pimobendan group was 0.64 (95% CI: 0.47–0.87) compared with the placebo group. The benefit persisted after adjustment for other variables. Adverse events were not different between treatment groups. Dogs in the pimobendan group lived longer (median survival time was 1059 days (95% CI: 952–NA) in the pimobendan group and 902 days (95% CI: 747–1061) in the placebo group) (P = .012).Conclusions and Clinical ImportanceAdministration of pimobendan to dogs with MMVD and echocardiographic and radiographic evidence of cardiomegaly results in prolongation of preclinical period and is safe and well tolerated. Prolongation of preclinical period by approximately 15 months represents substantial clinical benefit.
BackgroundHypertrophic cardiomyopathy is the most prevalent heart disorder in cats and principal cause of cardiovascular morbidity and mortality. Yet, the impact of preclinical disease is unresolved.Hypothesis/ObjectivesObservational study to characterize cardiovascular morbidity and survival in cats with preclinical nonobstructive (HCM) and obstructive (HOCM) hypertrophic cardiomyopathy and in apparently healthy cats (AH).AnimalsOne thousand seven hundred and thirty client‐owned cats (430 preclinical HCM; 578 preclinical HOCM; 722 AH).MethodsRetrospective multicenter, longitudinal, cohort study. Cats from 21 countries were followed through medical record review and owner or referring veterinarian interviews. Data were analyzed to compare long‐term outcomes, incidence, and risk for congestive heart failure (CHF), arterial thromboembolism (ATE), and cardiovascular death.ResultsDuring the study period, CHF, ATE, or both occurred in 30.5% and cardiovascular death in 27.9% of 1008 HCM/HOCM cats. Risk assessed at 1, 5, and 10 years after study entry was 7.0%/3.5%, 19.9%/9.7%, and 23.9%/11.3% for CHF/ATE, and 6.7%, 22.8%, and 28.3% for cardiovascular death, respectively. There were no statistically significant differences between HOCM compared with HCM for cardiovascular morbidity or mortality, time from diagnosis to development of morbidity, or cardiovascular survival. Cats that developed cardiovascular morbidity had short survival (mean ± standard deviation, 1.3 ± 1.7 years). Overall, prolonged longevity was recorded in a minority of preclinical HCM/HOCM cats with 10% reaching 9‐15 years.Conclusions and Clinical ImportancePreclinical HCM/HOCM is a global health problem of cats that carries substantial risk for CHF, ATE, and cardiovascular death. This finding underscores the need to identify therapies and monitoring strategies that decrease morbidity and mortality.
(1) ATP contents progressively decreased during heart failure as a result of a loss of the total purine pool. The loss of purines may be due to inhibition of de novo purine synthesis. (2) Loss of creatine is an early marker of heart failure and may serve as a compensatory mechanism minimizing the reduction of the total purine pool in the failing heart.
To study the physiological effect of the overexpression of myocardial Gsalpha (protein levels increased by approximately threefold in transgenic mice), we examined the responsiveness to sympathomimetic amines by echocardiography (9 MHz) in five transgenic mice and five control mice (both 10.3 +/- 0.2 months old). Myocardial contractility in transgenic mice, as assessed by left ventricular (LV) fractional shortening (LVFS) and LV ejection fraction (LVEF) was not different from that of control mice at baseline (LVFS, 40 +/- 3% versus 36 +/- 2%; LVEF, 78 +/- 3% versus 74 +/- 3%). LVFS and LVEF values in transgenic mice during isoproterenol (ISO, 0.02 micrograms/kg per minute) infusion were higher than the values in control mice (LVFS, 68 +/- 4% versus 48 +/- 3%; LVEF, 96 +/- 1% versus 86 +/- 3%; P < .05). Norepinephrine (NE, 0.2 micrograms/kg per minute) infusion also increased LVFS and LVEF in transgenic mice more than in control mice (LVFS, 59 +/- 4% versus 47 +/- 3%; LVEF, 93 +/- 2% versus 85 +/- 3%; P < .05). Heart rates of transgenic mice were higher than those of control mice during ISO and NE infusion. In three transgenic mice with heart rates held constant, LV dP/dt rose by 33 +/- 2% with ISO (0.02 micrograms/kg per minute) and by only 13 +/- 2% in three wild-type control mice (P < .01). NE (0.1 micrograms/kg per minute) also induced a greater effect on LV dP/dt in the three transgenic mice with heart rates held constant compared with three wild-type control mice (65 +/ 8% versus 28 +/- 4%, P < .05). Pathological and histological analyses of older transgenic mouse hearts (16.0 +/- 0.8 months old) revealed hypertrophy, degeneration, atrophy of cells, and replacement fibrosis reflected by significant increases in collagen volume in the subendocardium (5.2 +/- 1.4% versus 1.2 +/- 0.3%, P < .05) and in the cross-sectional area of myocytes (298 +/- 29 versus 187 +/- 12 micron2, P < .05) compared with control mouse hearts. These results suggest that Gsalpha overexpression enhances the efficacy of the beta-adrenergic receptor-Gs-adenylyl cyclase signaling pathway. This in turn leads to augmented inotropic and chronotropic responses to endogenous sympathetic stimulation. This action over the life of the animal results in myocardial damage characterized by cellular degeneration, necrosis, and replacement fibrosis, with the remaining cells undergoing compensatory hypertrophy. As a model, this transgenic mouse offers new insights into the mechanisms of cardiomyopathy and heart failure and provides a new tool for their study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.