Poly(lactic acid) (PLA) is a widely used biomass-derived polymer. It is chiral because the lactic acid monomer has an asymmetric carbon. If the L-lactide is polymerized, then the PLA polymer is an L-type PLA or poly(L-lactic acid) (PLLA); if the D-lactide in PLA is polymerized, then the polymer is a D-type PLA (PDLA). When these polymers undergo drawing or elongation, they exhibit shear piezoelectricity. PLA films are highly transparent and do not exhibit pyroelectricity because of the lack of intrinsic polarization. Therefore, if a PLLA film is used for a touch panel, which is operated by pressure, there is no spurious signal due to heating from the fingers. This suggests that PLLA films may be suitable for touch panels using pressure detection. We used PLLA as the base film of a projected capacitive touch panel with multiple electrodes, and demonstrated a multitouch gesture screen that was sensitive to pressure applied on the screen. This touch panel technology has potential applications for smart phones and tablet personal computers. #
A lactic acid monomer has an asymmetric carbon in the molecule, so there are optical isomer l- and d-type. The most widely used poly(lactic acid) (PLA) for commercial applications is poly(l-lactic acid) (PLLA). PLLA is the polymerization product of l-lactide. Certain treatments of PLLA can yield a film that exhibits shear piezoelectricity. Thus, piezoelectric PLLA fiber can be generated by micro slitting piezoelectric PLLA films or by a melt spinning method. We prepared left-handed helical multi fiber yarn (S-yarn) and right-handed helical yarn (Z-yarn) using piezoelectric PLLA fiber. PLLA exhibited shear mode piezoelectricity, causing the electric polarity of the yarn surface to be reversed on the S-yarn and Z-yarn when tension was applied. An SZ-yarn was produced by combining the S-yarn and Z-yarn, and fabric was prepared using the SZ-yarn. This study demonstrated that the fabric has a strong antibacterial effect, which is thought to be due to the strong electric field between the yarns. The field is generated by a piezoelectric effect when the fabric was extended and contracted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.