Presence of Foxp3+CD25+CD4(+) Treg in the allograft is necessary for allograft survival. GITRL-dependent expansion of Treg within the cornea is one mechanism underlying immune privilege in corneal allografts.
Because the pathogenesis of acute respiratory distress syndrome (ARDS) induced by influenza virus infection remains unknown, we can only improve on existing therapeutic interventions. To approach the subject, we investigated immunological etiology focused on cytokines and an acute lung damage factor in influenza-induced ARDS by using a PR-8 (A/H1N1)-infected mouse model. The infected mouse showed fulminant severe pneumonia with leukocyte infiltration, claudin alteration on tight junctions, and formation of hyaline membranes. In addition to interferon (IFN)-α, plenty of keratinocyte-derived chemokines (KC), macrophage inflammatory protein 2 (MIP-2), regulated on activation normal T-cell expressed and secreted (RANTES), and monocyte chemotactic protein 1 (MCP-1) were significantly released into bronchoalveolar lavage fluid (BALF) of the model. We focused on neutrophil myeloperoxidase (MPO) as a potent tissue damage factor and examined its contribution in influenza pneumonia by using mice genetically lacking in MPO. The absence of MPO reduced inflammatory damage with suppression of leakage of total BALF proteins associated with alteration of claudins in the lung. MPO −/− mice also suppressed viral load in the lung. The present study suggests that MPO-mediated OCl − generation affects claudin molecules and leads to protein leakage and viral spread as a damage factor in influenza-induced ARDS.
A single protein, termed Gag, is responsible for retrovirus particle assembly. After the assembled virion is released from the cell, Gag is cleaved at several sites by the viral protease (PR). The cleavages catalyzed by PR bring about a wide variety of physical changes in the particle, collectively termed maturation, and convert the particle into an infectious virion. In murine leukemia virus (MLV) maturation, Gag is cleaved at three sites, resulting in formation of the matrix (MA), p12, capsid (CA), and nucleocapsid (NC) proteins. We introduced mutations into MLV that inhibited cleavage at individual sites in Gag. All mutants had lost the intensely staining ring characteristic of immature particles; thus, no single cleavage event is required for this feature of maturation. Mutant virions in which MA was not cleaved from p12 were still infectious, with a specific infectivity only ϳ10-fold below that of the wild type. Particles in which p12 and CA could not be separated from each other were noninfectious and lacked a well-delineated core despite the presence of dense material in their interiors. In both of these mutants, the dimeric viral RNA had undergone the stabilization normally associated with maturation, suggesting that this change may depend upon the separation of CA from NC. Alteration of the C-terminal end of CA blocked CA-NC cleavage but also reduced the efficiency of particle formation and, in some cases, severely disrupted the ability of Gag to assemble into regular structures. This observation highlights the critical role of this region of Gag in assembly.
We have investigated the properties of murine leukemia virus Gag mutants in which the p12-CA cleavage site is altered. In one mutant, the cleavage is blocked; in the other, the conserved proline at the N-terminus of CA has been replaced with glycine. No infectivity was detected in either mutant. Mutant particles cannot synthesize full-length DNA upon infecting permissive cells. Particles composed of a mixture of wild-type and mutant proteins have severely impaired infectivity. These mixed particles are defective in their ability to synthesize DNA upon infection, but this defect is less severe than the loss of infectivity. Thus, proteins lacking the correct N-terminus of CA inhibit DNA synthesis and also interfere with formation or integration of a full-length, normal provirus. The results imply that CA proteins function as part of a large, highly organized structure in reverse transcription and apparently at a later step as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.