Objective Osteoarthritis is a progressive joint disease characterized by cartilage degradation and synovial inflammation. Presence of cartilage fragments in the joint due to degradation of cartilage is thought to be associated with local inflammatory response and progressive osteoarthritic process. Understanding the mechanism by which cartilage fragments elicit this destructive process should aid in designing novel therapeutic approaches. Therefore, objective of current study is to establish an in vitro model to examine the cross-talk between chondrocytes and cartilage fragments–stimulated macrophages. Design Cartilage fragments were prepared from femoral head cartilages of mice and analyzed using a scanning electron microscope and particle size analyzer. Bone marrow–derived macrophages were co-cultured with cartilage fragments and chondrocytes using transwell co-culture system. Macrophage inflammatory mediators in supernatant of cultures were determined by ELISA and gene expression of macrophages and chondrocyte were quantified by qRT-PCR. Results Shapes of cartilage fragments were irregular with sizes ranged between 0.54 and 55 μm. Macrophages cultured with cartilage fragments released significantly higher concentrations of TNF-α, IL-6, and NO than those of mock and control. Consistently, gene expressions of TNF-α, IL-6, and MMP-9 were significantly increased in stimulated macrophages. The elevation in production of pro-inflammatory molecules in stimulated macrophages cultures were coincident with an increase in gene expression of chondrocyte MMP-13, iNOS, and IL-6. Conclusion We developed an in vitro co-culture model to study the impact of stimulation of macrophage by cartilage fragments on the expression of chondrocyte carbolic factors. Our results revealed that cartilage fragments triggered macrophages inflammatory response that enhanced the production of chondrocyte catabolic factors.
Juvenile tissue healing is capable of extensive scarless healing that is distinct from the scar-forming process of the adult healing response. Although many growth factors can be found in the juvenile healing process, the molecular mechanisms of juvenile tissue healing are poorly understood. Here we show that juvenile mice deficient in the chemokine receptor CCR7 exhibit diminished large-scale healing potential, whereas CCR7-depleted adult mice undergo normal scar-forming healing similar to wild type mice. In addition, the CCR7 ligand CCL21 was transiently expressed around damaged cartilage in juvenile mice, whereas it is rarely expressed in adults. Notably, exogenous CCL21 administration to adults decreased scar-forming healing and enhanced hyaline-cartilage repair in rabbit osteochondral defects. Our data indicate that the CCL21/CCR7 axis may play a role in the molecular control mechanism of juvenile cartilage repair, raising the possibility that agents modulating the production of CCL21 in vivo can improve the quality of cartilage repair in adults. Such a strategy may prevent post-traumatic arthritis by mimicking the self-repair in juvenile individuals.
Accumulating evidence suggests that synovitis is associated with osteoarthritic process. Macrophages play principal role in development of synovitis. Our earlier study suggests that interaction between cartilage fragments and macrophages exacerbates osteoarthritic process. However, molecular mechanisms by which cartilage fragments trigger cellular responses remain to be investigated. Therefore, the current study aims at analyzing molecular response of macrophages to cartilage fragments. To this end, we analyzed the transcriptional profiling of murine macrophages exposed to cartilage fragments by RNA sequencing. A total 153 genes were differentially upregulated, and 105 genes were down-regulated in response to cartilage fragments. Bioinformatic analysis revealed that the most significantly enriched terms of the upregulated genes included scavenger receptor activity, integrin binding activity, TNF signaling, and toll-like receptor signaling. To further confirm our results, immunohistochemical staining was performed to detected regulated molecules in synovial tissues of OA patients. In consistence with RNA-seq results, MARCO, TLR2 and ITGα5 were mainly detected in the intima lining layer of synovial tissues. Moreover, blockade of TLR2 or ITGα5 but not Marco using specific antibody significantly reduced production of TNF-α in stimulated macrophages by cartilage fragments. Our data suggested that blocking TLR2 or ITGα5 might be promising therapeutic strategy for treating progressive osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.