Recent progress in neuro-oncology has validated the significance of genetic diagnosis in gliomas. We previously investigated IDH1/2 and TP53 mutations via Sanger sequencing for adult supratentorial gliomas and reported that PCR-based sequence analysis classified gliomas into three genetic subgroups that have a strong association with patient prognosis: IDH mutant gliomas without TP53 mutations, IDH and TP53 mutant gliomas, and IDH wild-type gliomas. Furthermore, this analysis had a strong association with patient prognosis. To predict genetic subgroups prior to initial surgery, we retrospectively investigated preoperative radiological data using CT and MRI, including MR spectroscopy (MRS), and evaluated positive 5-aminolevulinic acid (5-ALA) fluorescence as an intraoperative factor. We subsequently compared these factors to differentiate each genetic subgroup. Multiple factors such as age at diagnosis, tumor location, gadolinium enhancement, 5-ALA fluorescence, and several tumor metabolites according to MRS, such as myo-inositol (myo-inositol/total choline) or lipid20, were statistically significant factors for differentiating IDH mutant and wild-type, suggesting that these two subtypes have totally distinct characteristics. In contrast, only calcification, laterality, and lipid13 (lipid13/total Choline) were statistically significant parameters for differentiating TP53 wild-type and mutant in IDH mutant gliomas. In this study, we detected several pre- and intraoperative factors that enabled us to predict genetic subgroups for adult supratentorial gliomas and clarified that lipid13 quantified by MRS is the key tumor metabolite that differentiates TP53 wild-type and mutant in IDH mutant gliomas. These results suggested that each genetic subtype in gliomas selects the distinct lipid synthesis pathways in the process of tumorigenesis.
Genetic subgrouping of gliomas has been emphasized recently, particularly after the finding of isocitrate dehydrogenase 1 (IDH1) mutations. In a previous study, we investigated whole-chromosome copy number aberrations (CNAs) of gliomas and have described genetic subgrouping based on CNAs and IDH1 mutations. Subsequently, we classified gliomas using simple polymerase chain reaction (PCR)-based methods to improve the availability of genetic subgrouping. We selected IDH1/2 and TP53 as markers and analyzed 237 adult supratentorial gliomas using Sanger sequencing. Using these markers, we classified gliomas into three subgroups that were strongly associated with patient prognoses. These included IDH mutant gliomas without TP53 mutations, IDH mutant gliomas with TP53 mutations, and IDH wild-type gliomas. IDH mutant gliomas without TP53 mutations, which mostly corresponded to gliomas carrying 1p19q co-deletions, showed lower recurrence rates than the other 2 groups. In the other high-recurrence groups, the median progression-free survival (PFS) and overall survival (OS) of patients with IDH mutant gliomas with TP53 mutations were significantly longer than those of patients with IDH wild-type gliomas. Notably, most IDH mutant gliomas with TP53 mutations had at least one of the CNAs +7q, +8q, −9p, and −11p. Moreover, IDH mutant gliomas with at least one of these CNAs had a significantly worse prognosis than did other IDH mutant gliomas. PCR-based mutation analyses of IDH and TP53 were sufficient for simple genetic diagnosis of glioma that were strongly associated with prognosis of patients and enabled us to detect negative CNAs in IDH mutant gliomas.
Most IDH mutant gliomas harbor either 1p/19q co-deletions or TP53 mutation; 1p/19q co-deleted tumors have significantly better prognoses than tumors harboring TP53 mutations. To investigate the clinical factors that contribute to differences in tumor progression of IDH mutant gliomas, we classified recurrent tumor patterns based on MRI and correlated these patterns with their genomic characterization. Accordingly, in IDH mutant gliomas (N = 66), 1p/19 co-deleted gliomas only recurred locally, whereas TP53 mutant gliomas recurred both locally and in remote intracranial regions. In addition, diffuse tensor imaging suggested that remote intracranial recurrence in the astrocytomas, IDH-mutant with TP53 mutations may occur along major fiber bundles. Remotely recurrent tumors resulted in a higher mortality and significantly harbored an 8q gain; astrocytomas with an 8q gain resulted in significantly shorter overall survival than those without an 8q gain. OncoScan® arrays and next-generation sequencing revealed specific 8q regions (i.e., between 8q22 and 8q24) show a high copy number. In conclusion, only tumors with TP53 mutations showed patterns of remote recurrence in IDH mutant gliomas. Furthermore, an 8q gain was significantly associated with remote intracranial recurrence and can be considered a poor prognostic factor in astrocytomas, IDH-mutant.
Enteral nutrition (EN) is a rational approach to providing nutritional intake via the intestines in patients who are unable to tolerate parenteral nutrition. We conducted a preliminary study to investigate the effects of EN on the intestinal environment in 10 patients in a persistent vegetative state (PVS) (n = 5 each in the EN and EN with probiotics; Clostridium butyricum MIYAIRI 588) groups compared with 10 healthy controls. The results of 16S amplicon sequencing of the intestinal microbiota showed that EN led to dysbiosis with a decrease in α-diversity and an obvious change in β-diversity. A particularly significant decrease was seen in useful intestinal bacteria such as Bifidobacterium and butyrate-producing bacteria. Analysis of intestinal metabolites also supported these results, showing significant decreases in butyric and pyruvic acid after EN. Although C. butyricumMIYAIRI 588 improved some intestinal metabolites that were decreased after EN, it did not improve the dysbiosis of the intestinal microbiota. These findings indicate that EN causes dysbiosis of the intestinal microbiota and an imbalance in some intestinal metabolites in patients in a PVS. Moreover, although C. butyricumMIYAIRI 588 improved the imbalance of some intestinal metabolites after EN, it did not prevent dysbiosis of the intestinal microbiota.
Seizures are common in patients with gliomas; however, the mechanisms of epileptogenesis in gliomas have not been fully understood. This study hypothesized that analyzing quantified metabolites using magnetic resonance spectroscopy (MRS) might provide novel insights to better understand the epileptogenesis in gliomas, and specific metabolites might be indicators of preoperative seizures in gliomas. We retrospectively investigated patient information (gender, age at diagnosis of tumor, their survival time) and tumor information (location, histology, genetic features, and metabolites according to MRS) in patients with gliomas. The data were correlated with the incidence of seizure and analyzed statistically. Of 146 adult supratentorial gliomas, isocitrate dehydrogenase (IDH) mutant tumors significantly indicated higher incidence of preoperative seizures than IDH wild-type gliomas. However, MRS study indicated that glutamate concentration in IDH wild-type gliomas was higher than that in IDH mutant gliomas. Glutamate was not associated with high frequency of preoperative seizures in patients with gliomas. Instead, increased total N-acetyl-l-aspartate (tNAA) was significantly associated with them. Moreover, multivariable analysis indicated that increased level of tNAA was an independent predictor of preoperative seizures. According to MRS analysis, tNAA, rather than glutamate, might be a useful to detect preoperative seizures in patient with supratentorial gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.