BackgroundMycobacterium spp. is one of the most important species of zoonotic pathogens that can be transmitted from cattle to humans. The presence of these opportunistic, pathogenic bacteria in bovine milk has emerged as a public-health concern, especially among individuals who consume raw milk and related dairy products. To address this concern, the Brazilian control and eradication program focusing on bovine tuberculosis, was established in 2001. However, bovine tuberculosis continues to afflict approximately 1,3 percent of the cattle in Brazil. In the present study, 300 samples of milk from bovine herds, obtained from both individual and collective bulk tanks and informal points of sale, were cultured on Löwenstein-Jensen and Stonebrink media. Polymerase chain reaction (PCR)-based tests and restriction-enzyme pattern analysis were then performed on the colonies exhibiting phenotypes suggestive of Mycobacterium spp., which were characterized as acid-fast bacilli.ResultsOf the 300 bovine milk samples that were processed, 24 were positively identified as Mycobacterium spp.Molecular identification detected 15 unique mycobacterial species: Mycobacterium bovis, M. gordonae, M. fortuitum, M. intracellulare, M. flavescens, M. duvalii, M. haemophilum, M. immunogenum, M. lentiflavum, M. mucogenicum, M. novocastrense, M. parafortuitum, M. smegmatis, M. terrae and M. vaccae. The isolation of bacteria from the various locations occurred in the following proportions: 9 percent of the individual bulk-tank samples, 7 percent of the collective bulk-tank samples and 8 percent of the informal-trade samples. No statistically significant difference was observed between the presence of Mycobacterium spp. in the three types of samples collected, the milk production profiles, the presence of veterinary assistance and the reported concerns about bovine tuberculosis prevention in the herds.ConclusionThe microbiological cultures associated with PCR-based identification tests are possible tools for the investigation of the presence of Mycobacterium spp. in milk samples. Using these methods, we found that the Brazilian population may be regularly exposed to mycobacteria by consuming raw bovine milk and related dairy products. These evidences reinforces the need to optimize quality programs of dairy products, to intensify the sanitary inspection of these products and the necessity of further studies on the presence of Mycobacterium spp. in milk and milk-based products.
Differences in domestication and selection processes have contributed to considerable phenotypic and genotypic differences between Bos taurus and Bos indicus cattle breeds. Of particular interest in tropical and subtropical production environments are those genetic differences between subspecies that underlie the phenotypic extremes in tolerance and susceptibility to parasite infection. In general, B. taurus cattle are more susceptible to ectoparasites than B. indicus cattle in tropical environments, and much of this difference is under genetic control. To identify genomic regions involved in tick resistance, we developed a B. taurus x B. indicus F(2) experimental population to map quantitative trait loci (QTL) for resistance to the Riphicephalus (Boophilus) microplus tick. About 300 individuals were measured for parasite load in two seasons (rainy and dry) and genotyped for 23 microsatellite markers covering chromosomes 5, 7 and 14. We mapped a suggestive chromosome-wide QTL for tick load in the rainy season (P < 0.05) on chromosome 5. For the dry season, suggestive (P < 0.10) chromosome-wide QTL were mapped on chromosomes 7 and 14. The additive effect of the QTL on chromosome 14 corresponds to 3.18% of the total observed phenotypic variance. Our QTL-mapping study has identified different genomic regions controlling tick resistance; these QTL were dependent upon the season in which the ticks were counted, suggesting that the QTL in question may depend on environmental factors.
In developing nations, 10-20% of the human cases of tuberculosis are caused by Mycobacterium bovis. However, this percentage may be underestimated because most laboratories in developing countries do not routinely perform mycobacterial cultures, and only a few have the systems in place to identify M. bovis. There are few studies investigating genotypic diversity and drug resistance in M. bovis from animal and/or human infections. The genotypic diversity of M. bovis strains obtained from bovine lymph nodes were investigated by spacer oligonucleotide typing (spoligotyping) and mycobacterial interspersed repetitive unit-variable-number tandem repeat typing (MIRU-VNTR). The phenotypic resistance to isoniazid and rifampicin and MIC values of the isolates were determined using the resazurin microtiter assay plate method (REMA). The evaluation of the possible genetic basis for such resistance was performed with GenoType MTBDRplus. Sixty-seven isolates were obtained, of which 11 (16%) were MDR-TB, 8 (12%) were isoniazid-resistant, and 2 (3%) were rifampicin-resistant. Mutations associated with drug resistance were not found. Genotyping techniques enabled the grouping of the strains into 12 clusters and 21 isolates with unique profiles. The high frequency of M. bovis reinforces the impact of the pathogen as a major causal agent of bovine tuberculosis in the study area. The resistance of the strains to drugs used for first-line treatment of human tuberculosis raises public health concerns. Further studies are required to elucidate the basis of drug resistance and genotypic diversity in M. bovis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.