Immune cell-mediated destruction of pathogens may result in excessive collateral damage to normal tissues, and the failure to control activated immune cells may cause immunopathologies. The search for physiological mechanisms that downregulate activated immune cells has revealed a critical role for extracellular adenosine and for immunosuppressive A2A adenosine receptors in protecting tissue from inflammatory damage. Tissue damage-associated deep hypoxia, hypoxia-inducible factors, and hypoxia-induced accumulation of adenosine may represent one of the most fundamental and immediate tissue-protecting mechanisms, with adenosine A2A receptors triggering "OFF" signals in activated immune cells. In these regulatory mechanisms, oxygen deprivation and extracellular adenosine accumulation serve as "reporters," while A2A adenosine receptors serve as "sensors" of excessive tissue damage. The A2A receptor-triggered generation of intracellular cAMP then inhibits activated immune cells in a delayed negative feedback manner to prevent additional tissue damage. Targeting A2A adenosine receptors may have important clinical applications.
In order to control dispersion and dispersion slope of indexguiding photonic crystal fibers (PCFs), a new controlling technique of chromatic dispersion in PCF is reported. Moreover, our technique is applied to design PCF with both ultra-low dispersion and ultra-flattened dispersion in wide wavelength range. A full-vector finite element method with anisotropic perfectly matched layers is used to analyze the dispersion properties and the confinement losses in a PCF with finite number of air holes. It is shown from numerical results that it is possible to design a fourring PCF with flattened dispersion of 0 +/- 0.5 ps/(km.nm) from 1.19 m to 1.69 m wavelength range and a five-ring PCF with flattened dispersion of 0 +/- 0.4 ps/(km.nm) from 1.23 m to 1.72 m wavelength range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.