We clarified the modulating action of the endocannabinoid system, and its possible mediation by the arachidonic acid cascade, on the reinstatement of methamphetamine (METH)-seeking behavior, using the intravenous self-administration paradigm in rats. Following 12 days of self-administration of METH, the replacement of METH with saline resulted in a gradual decrease in lever press responses (extinction). Under extinction conditions, METH-priming or re-exposure to cues previously paired with METH infusion markedly increased the responses (reinstatement of drug-seeking). The cannabinoid CB1 receptor antagonist, SR141716A, blocked this behavior. Although the cannabinoid agonist, D 8 -tetrahydrocannabinol (THC), had no effects by itself, coadministration of the agonist and METH at small doses reinstated the drug-seeking behavior. THC attenuated the effects of the reinstatement-inducing dose of METH, but enhanced the effect of cues. Either given repeatedly during the extinction or singly, 24 h before the first METH-priming or cues challenge, THC suppressed the reinstatement. In another set of experiments, we found that diclofenac, a cyclooxygenase inhibitor, also attenuated the reinstatement induced by exposure to cues or drug-priming. These results suggest that the endocannabinoid system, through possible mediation by the arachidonic acid cascade, serves as a modulator of the reinstating effects of METH-priming and cues. Extending the current view on the treatment of drug dependence, these results indicate that endocannabinoid-activating substances as well as cyclooxygenase inhibitors may be promising as antirelapse agents.
This paper will review 1) experimental models of drug-seeking behavior and 2) mechanisms underlying the behavior, focusing on cocaine self-administration. After the acquisition of self-administration, vigorous lever-pressing is generally observable after the drug was replaced by saline. This lever-pressing behavior under saline infusion can be considered "drug-seeking behavior". Drug-seeking behavior is reinstated by non-contingent injection of the drug, stress exposure and presentation of drug-associated stimuli even after extinction. This is called a relapse/reinstatement model. Electrophysiological studies showed that the majority of accumbal neurons is tonically inhibited during cocaine self-administration and exhibited phasic increases in firing time-locked to cocaine self-infusion, which might represent the craving state or drive animals to drug-seeking behavior. Voltammetry and microdialysis studies indicated that the timing of drug-seeking responses can be predicted from fluctuations in accumbal extracellular dopamine concentration. Whereas dopamine D2-like agonists reinstated extinguished cocaine-seeking behavior, D1-like agonists prevented the relapse in cocaine-seeking behavior induced by cocaine itself. Given that an AMPA receptor antagonist, but not dopamine antagonist, prevented cocaine-seeking behavior induced by cocaine, glutamate transmission in the nucleus accumbens is thought to be important for expression of craving or drug-seeking behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.