Transplantation of mesenchymal stem cells (MSCs) derived from bone marrow has been shown to improve functional outcome in spinal cord injury (SCI). We transplanted MSCs derived from human bone marrow (hMSCs) to study their potential therapeutic effect in SCI in the rat. In addition to hMSCs, we used gene-modified hMSCs to secrete brain-derived neurotrophic factor (BDNF-hMSCs). After a dorsal transection lesion was induced at T9, cells were microinjected on each side of the transection site. Fluorogold (FG) was injected into the epicenter of the lesion cavity to identify transected corticospinal tract (CST) neurons. At 5 weeks after transplantation, the animals were perfused. Locomotor recovery improvement was observed for the BDNF-hMSC group, but not in the hMSC group. Structurally there was increased sprouting of injured corticospinal tract and serotonergic projections after hMSC and BDNF-hMSC transplantation. Moreover, an increased number of serotonergic fibers was observed in spinal gray matter including the ventral horn at and below the level of the lesion, indicating increased innervation in the terminal regions of a descending projection important for locomotion. Stereological quantification was performed on the brains to determine neuronal density in primary motor (M1) cortex. The number of FG backfilled cells demonstrated an increased cell survival of CST neurons in M1 cortex in both the hMSC and BDNF-hMSC groups at 5 weeks, but the increase for the BDNF-hMSC group was greater. These results indicate that transplantation of hMSCs hypersecreting BDNF results in structural changes in brain and spinal cord, which are associated with improved functional outcome in acute SCI.
The potential of bone marrow cells to differentiate into myelin-forming cells and to repair the demyelinated rat spinal cord in vivo was studied using cell transplantation techniques. The dorsal funiculus of the spinal cord was demyelinated by x-irradiation treatment, followed by microinjection of ethidium bromide. Suspensions of a bone marrow cell fraction acutely isolated from femoral bones in LacZ transgenic mice were prepared by centrifugation on a density gradient (Ficoll-Paque) to remove erythrocytes, platelets, and debris. The isolated cell fraction contained hematopoietic and nonhematopoietic stem and precursor cells and lymphocytes. The cells were transplanted into the demyelinated dorsal column lesions of immunosuppressed rats. An intense blue beta-galactosidase reaction was observed in the transplantation zone. The genetically labeled bone marrow cells remyelinated the spinal cord with predominately a peripheral pattern of myelination reminiscent of Schwann cell myelination. Transplantation of CD34(+) hematopoietic stem cells survived in the lesion, but did not form myelin. These results indicate that bone marrow cells can differentiate in vivo into myelin-forming cells and repair demyelinated CNS.
Olfactory ensheathing cells (OECs) prepared from the olfactory bulbs of adult transgenic Sprague Dawley (SD) rats expressing green fluorescent protein (GFP) were transplanted into a dorsal spinal cord transection lesion of SD rats. Five weeks after transplantation, the cells survived within the lesion zone and oriented longitudinally along axons that bridged the transection site. Although the highest density of GFP cells was within the lesion zone, some cells distributed longitudinally outside of the lesion area. Myelinated axons spanning the lesion were observed in discrete bundles encapsulated by a cellular element. Electron micrographs of spinal cords immunostained with an anti-GFP antibody indicated that a majority of the peripheral-like myelinated axons were derived from donor OECs. Open-field locomotor behavior was significantly improved in the OEC transplantation group. Thus, transplanted OECs derived from the adult olfactory bulb can survive and orient longitudinally across a spinal cord transection site and form myelin. This pattern of repair is associated with improved locomotion.
Most myxofibrosarcoma show an infiltrative growth pattern histologically. Orthopedic oncologist should pay careful attention to accurately assess tumor extension. It seems prudent to resect the entire area of abnormal signal extension seen on MRI whenever possible to obtain an adequate surgical margin of myxofibrosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.