A method to utilize CdZnTe (CZT) detectors in diagnostic x-ray spectroscopy is described in this article. Spectral distortion due to transmission of primary x rays, the escape of cadmium- and tellurium-K fluorescent x rays, and tailing was severe in measured x-ray spectra. Therefore, correction for the distortion was performed with the stripping method using response functions. The response functions were calculated with the Monte Carlo method. The Hecht equation was employed to approximate the effects of carrier trapping in the calculations. The parameters in the Hecht equation, the mean-free path (lambda) of electrons and holes, were determined such that the tailing in calculated response functions fit that in measured gamma-ray spectra. Corrected x-ray spectra agreed well with the reference spectra measured with an HPGe detector. The results indicate that CZT detectors are suitable for diagnostic x-ray spectroscopy with appropriate corrections.
Background: Although dermatitis herpetiformis (DH) is a relatively common disease in Caucasian populations, it is rare in Asian populations including the Japanese. We encountered a Japanese case of DH which showed granular IgA and C3 deposits in the papillary dermis and which was associated with gluten-sensitive enteropathy but no HLA-B8/DR3/DQ2. Objective: The purpose of this study is to describe the characteristics of Japanese DH cases, since most of them have been reported in Japanese language and dermatologists outside Japan are not familiar with the characteristics of Japanese DH. Methods: We have reviewed all 34 Japanese DH cases reported previously. Results: We found several features of Japanese DH compared with Caucasian DH, such as a high frequency of the fibrillar pattern, rarity of gluten-sensitive enteropathy and an absence of the HLA-B8/DR3/DQ2 haplotype. Conclusion: There might be significant differences in pathophysiology between Caucasian and Japanese DH cases.
PurposeIn stereotactic radiosurgery (SRS) with single‐isocentric treatments for brain metastases, rotational setup errors may cause considerable dosimetric effects. We assessed the dosimetric effects on HyperArc plans for single and multiple metastases.MethodsFor 29 patients (1–8 brain metastases), HyperArc plans with a prescription dose of 20–24 Gy for a dose that covers 95% (D95%) of the planning target volume (PTV) were retrospectively generated (Ref‐plan). Subsequently, the computed tomography (CT) used for the Ref‐plan and cone‐beam CT acquired during treatments (Rot‐CT) were registered. The HyperArc plans involving rotational setup errors (Rot‐plan) were generated by re‐calculating doses based on the Rot‐CT. The dosimetric parameters between the two plans were compared.ResultsThe dosimetric parameters [D99%, D95%, D1%, homogeneity index, and conformity index (CI)] for the single‐metastasis cases were comparable (P > 0.05), whereas the D95% for each PTV of the Rot‐plan decreased 10.8% on average, and the CI of the Rot‐plan was also significantly lower than that of the Ref‐plan (Ref‐plan vs Rot‐plan, 0.93 ± 0.02 vs 0.75 ± 0.14, P < 0.01) for the multiple‐metastases cases. In addition, for the multiple‐metastases cases, the Rot‐plan resulted in significantly higher V10Gy (P = 0.01), V12Gy (P = 0.02), V14Gy (P = 0.02), and V16Gy (P < 0.01) than those in the Ref‐plan.ConclusionThe rotational setup errors for multiple brain metastases cases caused non‐negligible underdosage for PTV and significant increases of V10Gy to V16Gy in SRS with HyperArc.
The mechanism of particle generation is investigated in order to prevent defects formed on wafers in the plasma etching of multi-layered films composed of tungsten silicide (WSi) and polycrystalline silicon (poly-Si). Particles are measured by an in situ monitoring system using laser light scattering during the etching process. The particles are composed of AlF 3 , which is presumably generated by reacting the coating material Al 2 O 3 on the etching chamber wall with plasma containing fluorine atoms, F in the presence of H 2 O absorbed into the chamber parts and materials. We demonstrated successfully that dehydration of the chamber parts and materials by plasma discharge suppresses particle generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.