High-temperature (high-T c ) superconductivity appears as a consequence of the carrier-doping of an undoped parent compound exhibiting antiferromagnetic order; thereby, ground-state properties of the parent compound are closely relevant to the superconducting state 1,2 . On the basis of the concept, a spin-fluctuation has been addressed as an origin of pairing of the superconducting electrons in cuprates 1 . Whereas, there is growing interest in the pairing mechanism such as an unconventional spin-fluctuation or an advanced orbital-fluctuation due to the characteristic multi-orbital system in iron-pnictides 3-6 . Here, we report the discovery of an antiferromagnetic order as well as a unique structural transition in electron-overdoped
Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and “CES” (human) and “Ces” (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding “P” and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.
Vascular endothelial growth factor-C (VEGF-C) functions specifically to induce lymphangiogenesis. We examined the relationship between expression of VEGF-C and clinicopathological features in patients with colorectal cancer. The expression of VEGF-C in the 99 primary tumours and 18 metastatic lymph nodes from colorectal cancer patients was examined immunohistochemically. To verify VEGF-C mRNA expression, reverse transcriptase-polymerase chain reaction (RT-PCR) was carried out. The expression of VEGF-C correlated with lymphatic involvement, lymph nodes metastasis, and depth of invasion. On the other hand, correlations were nil with regard to gender of the patients, histologic type, venous involvement, and liver metastasis. The expression of VEGF-C in metastatic lymph nodes was fairly consistent with this expression in the primary tumour. Survival time was shorter for VEGF-C positive groups than for VEGF-C negative ones, but with no statistically significant difference. RT-PCR findings revealed that the expression of VEGF-C mRNA correlated mostly with that of VEGF-C protein expression. VEGF-C may play an important role in lymphatic spread of colorectal cancer. © 2000 Cancer Research Campaign
Angiogenesis is a critical step in the development and progression of hepatocellular carcinoma (HCC). Myeloid lineage cells, such as macrophages and monocytes, have been reported to regulate angiogenesis in mouse tumor models. TIE2, a receptor of angiopoietins, conveys pro-angiogenic signals and identifies a monocyte/macrophage subset with pro-angiogenic activity. Here, we analyzed the occurrence and kinetics of TIE2-expressing monocytes/macrophages (TEMs) in HCC patients. This study enrolled 168 HCV-infected patients including 89 with HCC. We examined the frequency of TEMs, as defined as CD141CD161TIE21 cells, in the peripheral blood and liver. The localization of TEMs in the liver was determined by immunofluorescence staining. Micro-vessel density in the liver was measured by counting CD341 vascular structures. We found that the frequency of circulating TEMs was significantly higher in HCC than non-HCC patients, while being higher in the liver than in the blood. In patients who underwent local radio-ablation or resection of HCC, the frequency of TEMs dynamically changed in the blood in parallel with HCC recurrence. Most TEMs were identified in the perivascular areas of tumor tissue. A significant positive correlation was observed between micro-vessel density in HCC and frequency of TEMs in the blood or tumors, suggesting that TEMs are involved in HCC angiogenesis. Receiver operating characteristic analyses revealed the superiority of TEM frequency to AFP, PIVKA-II and ANG-2 serum levels as diagnostic marker for HCC. Conclusion: TEMs increase in patients with HCC and their frequency changes with the therapeutic response or recurrence. We thus suggest that TEM frequency can be used as a diagnostic marker for HCC, potentially reflecting angiogenesis in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.