Topographic maps with a defined spatial ordering of neuronal connections are a key feature of brain organization. Such maps are believed to develop in response to complementary position-specific labels in presynaptic and postsynaptic fields. However, the complementary labeling molecules are not known. In the well-studied visual map of retinal axons projecting to the tectum, the labels are hypothesized to be in gradients, without needing large numbers of cell-specific molecules. We recently cloned ELF-1 as a ligand for Eph family receptors. Here, RNA hybridization shows matching expression gradients for ELF-1 in the tectum and its receptor Mek4 in the retina. Binding activity detected with alkaline phosphatase fusions of ELF-1 and Mek4 also reveals gradients and provides direct evidence for molecular complementarity of gradients in reciprocal fields. ELF-1 and Mek4 may therefore play roles in retinotectal development and have properties predicted of topographic mapping labels.
Topographic maps, which maintain the spatial order of neurons in the order of their axonal connections, are found throughout the nervous system. In the visual retinotectal projection, ELF-1, a ligand in the tectum, and its receptors in the retina show complementary gradients in expression and binding, indicating they may be positional labels for map development. Here we show that ELF-1 acts as a repellent axon guidance factor in vitro. In vivo, when the tectal ELF-1 pattern is modified by retroviral overexpression, retinal axons avoid ectopic ELF-1 patches and map to abnormally anterior positions. All these effects were seen on axons from temporal but not nasal retina, indicating that ELF-1 could determine nasal versus temporal retinotectal specificity, and providing a direct demonstration of a cell recognition molecule with topographically specific effects on neural map development.
Neuronal pentraxins (NPs) define a family of proteins that are homologous to C-reactive and acutephase proteins in the immune system and have been hypothesized to be involved in activity-dependent synaptic plasticity. To investigate the role of NPs in vivo, we generated mice that lack one, two, or all three NPs. NP1/2 knock-out mice exhibited defects in the segregation of eye-specific retinal ganglion cell (RGC) projections to the dorsal lateral geniculate nucleus, a process that involves activity-dependent synapse formation and elimination. Retinas from mice lacking NP1 and NP2 had cholinergically driven waves of activity that occurred at a frequency similar to that of wild-type mice, but several other parameters of retinal activity were altered. RGCs cultured from these mice exhibited a significant delay in functional maturation of glutamatergic synapses. Other developmental processes, such as pathfinding of RGCs at the optic chiasm and hippocampal long-term potentiation and long-term depression, appeared normal in NP-deficient mice. These data indicate that NPs are necessary for early synaptic refinements in the mammalian retina and dorsal lateral geniculate nucleus. We speculate that NPs exert their effects through mechanisms that parallel the known role of short pentraxins outside the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.