We investigated the anti-obesity effects of dietary D-psicose on adult rats fed a high-sucrose diet. Wistar rats (16 weeks old) that had previously been fed a high-sucrose diet (HSD) were fed HSD or a high-starch diet (HTD) with or without 5% D-psicose for 8 weeks. The food efficiency, carcass fat percentage, abdominal fat accumulation, and body weight gain were all significantly suppressed by dietary D-psicose.
We investigated the anti-obesity effects of D-psicose by increasing energy expenditure in rats pair-fed the high-sucrose diet (HSD). Wistar rats were divided into two dietary groups: HSD containing 5% cellulose (C) and 5% d-psicose (P). The C dietary group was further subdivided into two groups: rats fed the C diet ad libitum (C-AD) and pair-fed the C diet along with those in the P group (C-PF). Resting energy expenditure during darkness and lipoprotein lipase activity in the soleus muscle were significantly higher in the P group than in the C-PF group. Serum levels of glucose, leptin and adiponectin; glucose-6-phosphate dehydrogenase activities in the liver and perirenal adipose tissue; and body fat accumulation were all significantly lower in the P group than in the C-PF group. The anti-obesity effects of D-psicose could be induced not only by suppressing lipogenic enzyme activity but also by increasing EE in rats.
We investigated the dietary effects of egg white (EW) and its hydrolysate (EWH) on fat metabolism in rats. Wistar rats were divided into casein, EW and EWH dietary groups, and fed their respective diet for 8 weeks. Dietary EW and EWH decreased food intake, body weight gain and fat accumulation in the carcass, liver, muscles and adipose tissues, but muscle weight was increased. In addition, dietary EW and EWH decreased stearoyl-CoA desaturase (SCD) indices and glucose-6-phosphate dehydrogenase activity of the liver and gastrocnemius muscle. Dietary EW also increased the fecal excretion of triacylglycerol, cholesterol and total bile acids, and decreased the serum levels of triacylglycerol and leptin. The suppressive effects of dietary EW on food intake and body fat accumulation were weakened by dietary EWH. These findings indicate that EW and EWH, especially EW, are effective in reducing body fat accumulation by regulating hepatic and muscular SCD indices.
We investigated the fat metabolic characteristics in non-obese and diabetic Goto-Kakizaki (GK) rat and the effects of dietary egg white hydrolysate (EWH) on glucose and fat metabolism. Wistar (W) and GK (G) rats were placed into dietary casein (WC and GC) or EWH (WE and GE) group, and fed their respective diet for six weeks. Triglyceride (TG) content and stearoyl-CoA desaturase (SCD) indices in the soleus muscle were higher in the GC group than WC group in parallel with worsening serum glucose metabolic parameters. The glucose metabolic parameters were significantly improved in the GE group. The TG accumulation and SCD indices in the soleus muscle were also significantly lower in the GE group than in the GC group. In conclusion, dietary EWH not only improved glucose metabolism but also reduced both TG accumulation and SCD indices in the soleus muscle of GK rat.
Summary Egg white (EW) is known as a nutritional protein but can induce allergic reactions in humans. We investigated the dietary effects of EW and its hydrolysate (EWH), which contains less allergen, on body fat accumulation in Wistar rats fed an equicaloric high-fat and high-sucrose diet for 8 wk (Exp A). The pair-feeding of EW and equicaloric-feeding of EWH increased fecal fat excretion and suppressed lipid accumulation in the liver and muscles but not in the abdominal adipose tissues, carcass, or total body. Dietary EWH also suppressed the serum glucose level and alkaline phosphatase activity. Further, we showed a higher dispersibility of EW and EWH in physicochemical assay (Exp B). Next, we investigated the suppressive effects of a single administration of EW and EWH on lipid-induced hypertriglyceridemia and small intestinal meal transit in ddY mice (Exp C). However, a single administration of EW or EWH did not suppress the lipid-induced hypertriglyceridemia nor did it delay the rate of small intestinal transit. These findings indicated that dietary EW and EWH reduce hepatic and muscular (ectopic) fat accumulation mainly by suppressing fat absorption and supplying fat to the liver and muscles. Therefore, the low-allergenic EWH can be effective for the prevention of high-fat-diet-induced obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.