Water molds of the genus Phytophthora include many plant pathogens responsible for epidemics such as potato blight and sudden oak death, causing global economic damages. Sexual reproduction is of biological importance in Phytophthora and has been believed to be stimulated by unknown endogenous factors named a hormones. We describe here the chemical characterization of a Phytophthora mating hormone, a1, which was obtained from approximately 2 tons of culture fluid of one mating type of a species and which induced sexual spores on the counter-mating type at a nanogram level.
A high-speed video camera was combined with a newly developed optical system to measure time resolved two-dimensional (2D) temperature distribution in flames. This diagnostics has been applied to measure the temperature distribution in an industrial size regenerative test furnace facility using highly preheated combustion air and heavy fuel oil. The 2D distributions of continuum emission from soot particles in these flames have been simultaneously measured at two discrete wave bands at 125 frames/sec. This allowed us to determine the temperature from each image on the basis of two-color 2D thermometry, in which the ratio of the 2D emission intensity distribution at various spatial position in the flame was converted into the respective 2D temperature distribution with much higher spatial resolution as compared to that obtainable with thermocouples. This diagnostic method was applied to both premixed and diffusion flames with highly preheated low oxygen concentration combustion air using heavy fuel oil. The results show that higher temperature regions exist continuously in the premixed flame as compared to the diffusion flame. This provided clear indication of higher NO emission from the premixed flame as compared to diffusion flames during the combustion of heavy fuel oil under high-temperature air combustion conditions. This observation is contrary to that obtained with normal temperature combustion air wherein diffusion flames result in higher NOx emission levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.