SUMMARY
Negamycin (NEG) is a ribosome targeting antibiotic which exhibits clinically promising activity. Its binding site and mode of action have remained unknown. We solved the structure of the Thermus thermophilus ribosome bound to mRNA and three tRNAs, in complex with NEG. The drug binds to both small and large ribosomal subunits at 9 independent sites. Resistance mutations in the 16S rRNA unequivocally identified the binding site in the vicinity of the conserved helix 34 (h34) in the small subunit as the primary site of antibiotic action in the bacterial and, possibly, eukaryotic ribosome. At this site, NEG contacts 16S rRNA as well as the anticodon loop of the A-site tRNA. Although the NEG site of action overlaps with that of tetracycline (TET), the two antibiotics exhibit different activities: while TET sterically hinders binding of aminoacyl-tRNA to the ribosome, NEG stabilizes its binding thereby inhibiting translocation and stimulating miscoding.
To gain insight into the regulation of mitochondrial adaptations to hindlimb unloading (HU), the activity of mitochondrial enzymes and the expression of nuclear-encoded genes which control mitochondrial properties in mouse gastrocnemius muscle were investigated. Biochemical and enzyme histochemical analysis showed that subsarcolemmal mitochondria were lost largely than intermyofibrillar mitochondria after HU. Gene expression analysis revealed disturbed or diminished gene expression patterns. The three main results of this analysis are as follows. First, in contrast to peroxisome proliferator-activated receptor γ coactivator 1 β (PGC-1β) and PGC-1-related coactivator, which were down-regulated by HU, PGC-1α was up-regulated concomitant with decreased expression of its DNA binding transcription factors, PPARα, and estrogen-related receptor α (ERRα). Moreover, there was no alteration in expression of nuclear respiratory factor 1, but its downstream target gene, mitochondrial transcription factor A, was down-regulated. Second, both mitofusin 2 and fission 1, which control mitochondrial morphology, were down-regulated. Third, ATP-dependent Lon protease, which participates in mitochondrial-protein degradation, was also down-regulated. These findings suggest that HU may induce uncoordinated expression of PGC-1 family coactivators and DNA binding transcription factors, resulting in reducing ability of mitochondrial biogenesis. Furthermore, down-regulation of mitochondrial morphology-related genes associated with HU may be also involved in alterations in intracellular mitochondrial distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.