SummaryThe excessive application of nitrogen fertilizer to maximize crop yields causes negative environmental effects such as pollution and ecological imbalance. To overcome this problem, researchers have attempted to improve the nitrogen assimilation capacity of crops. Maize Dof1 (ZmDof1) is a plant-specific transcription factor shown to promote nitrogen assimilation in Arabidopsis thaliana (Arabidopsis) even under nitrogen-deficient conditions. The present study examines the effect of the introduction of the ZmDof1 gene on carbon and nitrogen assimilation in rice. ZmDof1 induced the expression of phosphoenolpyruvate carboxylase (PEPC) genes in transgenic rice plants and transactivated the PEPC promoters in protoplast transient assays, showing similar effects in rice as in Arabidopsis. Transgenic rice expressing ZmDof1 and grown in the presence of 360 lM (nitrogen-sufficient) or 90 lM (nitrogen-deficient) of nitrogen concentrations showed modulation of metabolite content and gene expression associated with the anaplerotic pathway for the TCA cycle, suggesting an increased carbon flow towards nitrogen assimilation. Furthermore, increases in carbon and nitrogen amounts per seedling were found in Dof1 rice grown under nitrogen-deficient conditions. Nitrogen deficiency also resulted in the predominant distribution of nitrogen to roots, accompanied by significant increases in root biomass and modification of the shoot-to-root ratio. Measurement of the CO 2 gas exchange rate showed a significant increase in the net photosynthesis rate in Dof1 rice under nitrogen-deficient conditions. Taken these together, the present study displayed that ZmDof1 expression in rice could induce gene expressions such as PEPC genes, modulate carbon and nitrogen metabolites, increase nitrogen assimilation and enhance growth under low-nitrogen conditions.
It seems that C(4) grasses have structurally a superior photosynthate translocation and water distribution system by developing denser networks of small longitudinal and transverse veins, while keeping a constant density of large longitudinal veins. The bambusoid and panicoid C(3) grasses have a vascular system that is more similar to that in C(4) grasses than to that in the festucoid C(3) grasses.
In plants, glutamine synthetase (GS) is the enzyme that is mainly responsible for the assimilation of ammonium. Conversely, in microorganisms such as bacteria and Ascomycota, NADP(H)-dependent glutamate dehydrogenase (GDH) and GS both have important roles in ammonium assimilation. Here, we report the changes in nitrogen assimilation, metabolism, growth, and grain yield of rice plants caused by an ectopic expression of NADP(H)-GDH (gdhA) from the fungus Aspergillus niger in the cytoplasm. An investigation of the kinetic properties of purified recombinant protein showed that the fungal gdhA had 5.4-10.2 times higher V(max) value and 15.9-43.1 times higher K(m) value for NH(4)(+), compared with corresponding values for rice cytosolic GS as reported in the literature. These results suggested that the introduction of fungal GDH into rice could modify its ammonium assimilation pathway. We therefore expressed gdhA in the cytoplasm of rice plants. NADP(H)-GDH activities in the gdhA-transgenic lines were markedly higher than those in a control line. Tracer experiments by feeding with (15)NH(4)(+) showed that the introduced gdhA, together with the endogenous GS, directly assimilated NH(4)(+) absorbed from the roots. Furthermore, in comparison with the control line, the transgenic lines showed an increase in dry weight and nitrogen content when sufficient nitrogen was present, but did not do so under low-nitrogen conditions. Under field condition, the transgenic line examined showed a significant increase in grain yield in comparison with the control line. These results suggest that the introduction of fungal gdhA into rice plants could lead to better growth and higher grain yield by enhancing the assimilation of ammonium.
A simple, low-cost capillary electrophoresis-mass spectrometry (CE-MS) method is demonstrated for the simultaneous analysis of amino acids and small carboxylic acids (glycerate, lactate, fumarate, succinate, malate, tartrate, citrate, iso-citrate, cis-aconitate, and shikimate). All CE-MS experiments were performed using a single uncoated fused-silica capillary and with a single separation electrolyte, formic acid. For CE polarity, the CE inlet was set as the anode, and the MS side was set as the cathode. By using high-speed sheath gas flow, the apparent mobilities of all compounds were sped up; thus, the migration times of the carboxylic acids were reduced. In positive ion mode ESI-MS detection, small carboxylic acids were detected faintly as m/z = [M + 18](+) or [M + 23](+), after protonated molecule detection (m/z = [M + 1](+)) of the amino acids. In negative ion mode, all of these small carboxylic acids were detected clearly as deprotonated molecules (m/z = [M - 1](-)), after detection of the amino acids. By changing the polarity of the MS during CE separation, both amino acids and small carboxylic acids were detectable in a single electrophoresis analysis run. With this method, the diurnal metabolic changes of pineapple leaves were observed as reflecting Crassulacean acid metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.