Background:Intestinal epithelial cells (IECs) express low levels of TLR4 and are hyporesponsive to commensal bacteria. Results: TLR4 gene is methylated in IECs, and this process is dependent on commensal bacteria in the large intestine. Conclusion: Commensal bacteria control epigenetic modification of the host gene. Significance: This study shows a novel mechanism underlying the maintenance of intestinal symbiosis.
Foxp3 plays an important role in the development and the function of regulatory T cells (Treg). Both the induction and maintenance of Foxp3 gene expression are controlled by several regulatory regions including two enhancers in the conserved noncoding sequences (CNS). The functions of Enhancer 1 in CNS1 are well established, whereas those of Enhancer 2 in CNS2 remain unclear. Although CNS2 contains enhancer activity, methylated CpG sequences in this region prevent Foxp3 gene expression in Foxp3− T cells. These sequences are however demethylated in Foxp3+ Treg by mechanisms as yet unknown. To investigate the role of CNS2, we have determined the Enhancer 2 core sequence by luciferase reporter assays in the absence of methylation to exclude the inhibitory effect, and shown that transcription factors AP-1, Stat5 and Creb cooperate in regulating Enhancer 2 activity. We have then determined the methylation sensitivity of each of the transcription factors. AP-1 was found to be methylation sensitive as has previously been described for Creb. However, Stat5 was active even when its binding site in CNS2 was methylated. Stat5 binding to Enhancer 2 occurred early, and preceded that of AP-1 and Creb during Treg induction. In addition, Stat5 activation is itself dependent on TGF-β signaling through Smad3 mediated blockade of Socs3 expression. These findings suggest that Stat5 is a key regulator for opening up the CNS2 region during iTreg induction, while AP-1 and Creb maintain Enhancer 2 activity.
The intestinal tract contains many commensal bacteria that modulate various physiological host functions. Dysbiosis of commensal bacteria triggers dysfunction of the intestinal epithelial barrier, leading to the induction or aggravation of intestinal inflammation. To elucidate whether microRNA plays a role in commensal microbiome-dependent intestinal epithelial barrier regulation, we compared transcripts in intestinal epithelial cells (IECs) from conventional and germ-free mice and found that commensal bacteria induced the expression of miR-21-5p in IECs. miR-21-5p increased intestinal epithelial permeability and up-regulated ADP ribosylation factor 4 (ARF4), a small GTPase, in the IEC line Caco-2. We also found that ARF4 expression was up-regulated upon suppression of phosphatase and tensin homolog () and programmed cell death 4 (), which are known miR-21-5p targets, by RNAi. Furthermore, ARF4 expression in epithelial cells of the large intestine was higher in conventional mice than in germ-free mice. ARF4 suppression in the IEC line increased the expression of tight junction proteins and decreased intestinal epithelial permeability. These results indicate that commensal microbiome-dependent miR-21-5p expression in IECs regulates intestinal epithelial permeability via ARF4, which may therefore represent a target for preventing or managing dysfunction of the intestinal epithelial barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.