The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of >50 species known as the “Fusarium solani species complex”. Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.
A genetic map of the filamentous fungus Fusarium graminearum (teleomorph: Gibberella zeae) was constructed to both validate and augment the draft whole-genome sequence assembly of strain PH-1. A mapping population was created from a cross between mutants of the sequenced strain (PH-1, NRRL 31084, originally isolated from Michigan) and a field strain from Minnesota (00-676, NRRL 34097). A total of 111 ascospore progeny were analyzed for segregation at 235 loci. Genetic markers consisted of sequence-tagged sites, primarily detected as dCAPS or CAPS (n ¼ 131) and VNTRs (n ¼ 31), in addition to AFLPs (n ¼ 66) and 7 other markers. While most markers exhibited Mendelian inheritance, segregation distortion was observed for 25 predominantly clustered markers. A linkage map was generated using the Kosambi mapping function, using a LOD threshold value of 3.5. Nine linkage groups were detected, covering 1234 cM and anchoring 99.83% of the draft sequence assembly. The nine linkage groups and the 22 anchored scaffolds from the sequence assembly could be assembled into four chromosomes, leaving only five smaller scaffolds (59,630 bp total) of the nuclear DNA unanchored. A chromosome number of four was confirmed by cytological karyotyping. Further analysis of the genetic map data identified variation in recombination rate in different genomic regions that often spanned several hundred kilobases.
There are at least ten plant diseases caused by Alternaria species in which host-specific toxins (HSTs) are responsible for fungal pathogenicity. Of these HST-producers, seven are considered distinct pathotypes of the species Alternaria alternata, and the remaining three are among other species of pathogenic Alternaria. Inter- and intra-specific variation among Alternaria taxa, including HST-producers, was determined by electrophoretic karyotyping using pulsed-field gel electrophoresis. A. alternata including seven pathotypes of A. alternata and eight non-pathogenic strains had 9-11 chromosomal bands with estimated sizes ranging from 0.4 to 5.7 Mb. In contrast, Alternaria species that are morphologically distinct from A. alternata had 8-10 bands with sizes between 0.9 and 5.7 Mb. Estimated genome sizes of A. alternata and other Alternaria species ranged from 28.8 to 33.6 Mb and 25.1 to 30.7 Mb, respectively. Other species of pathogenic Alternaria were difficult to differentiate from A. alternata on the basis of chromosome-size polymorphisms alone, but Southern analysis using rDNA as a probe could, in some cases, differentiate between them. These results were cytologically confirmed by 4',6-diamidino-2-phenylindole (DAPI) staining and fluorescence in situ hybridization with a rDNA probe for mitotic metaphase chromosomes prepared by the germ-tube burst method.
The karyotypes of three isolates of Mycosphaerella graminicola, the septoria tritici blotch pathogen of wheat, were analyzed with both pulsed field gel electrophoresis (PFGE) and the cytological technique called germ tube burst method (GTBM). These analyses revealed a chromosome length polymorphism among these isolates. The estimated genome size was 31-40 Mb depending on the isolates, indicating 17-22% redundancy in the genome of the standard strain IPO323 because such differences do not affect development, pathogenicity and sexual reproduction of the other isolates. The chromosome numbers in the three isolates were 18-20 and the chromosome size was 0.3-6 Mb. These data show that M. graminicola has the highest chromosome number and the smallest autosomes (A chromosomes) in filamentous ascomycetes. Our data also confirmed a large ($6 Mb) chromosome that was assembled recently in the IPO323 genome sequence. GTBM analyses revealed the mitotic metaphase chromosomes, enabling chromosome quantification, which was fully congruent with the PFGE analyses. These data will be instrumental in the final assembly of the M. graminicola genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.