The microstructural distribution associated with a hardness profile in a friction-stir-welded, agehardenable 6063 aluminum alloy has been characterized by transmission electron microscopy (TEM) and orientation imaging microscopy (OIM). The friction-stir process produces a softened region in the 6063 Al weld. Frictional heating and plastic flow during friction-stir welding create fine recrystallized grains in the weld zone and recovered grains in the thermomechanically affected zone. The hardness profile depends greatly on the precipitate distribution and only slightly on the grain size. The softened region is characterized by dissolution and growth of the precipitates during the welding. Simulated weld thermal cycles with different peak temperatures have shown that the precipitates are dissolved at temperatures higher than 675 K and that the density of the strengthening precipitate was reduced by thermal cycles lower than 675 K. A comparison between the thermal cycles and isothermal aging has suggested precipitation sequences in the softened region during friction-stir welding.
In order to characterize plastic flow during friction-stir welding, the microtextures in a friction-stir weld of the precipitation-hardened aluminum alloy 6063 have been analyzed by orientation imaging microscopy (OIM). The base-material plate has a Goss orientation. The weld center region, except for the upper surface, takes a typical shear texture component with two types of orientations. The orientations have a pair of common {111} and ͗110͘ parallel to the cylindrical pin surface and transverse direction of the plate, respectively. The typical texture component is also observed around the weld center on the midsection, although it rotates about the plate normal direction. A microtexture analysis after postweld heat treatment has suggested that dynamic recrystallization during frictionstir welding generates the recrystallized grains at the weld center.
The precipitation sequence in friction stir weld of 6063 aluminum during postweld aging, associated with Vickers hardness profiles, has been examined by transmission electron microscopy. Friction stir welding produces a softened region in the weld, which is characterized by dissolution and growth of the precipitates. The precipitate-dissolved region contains a minimum hardness region in the aswelded condition. In the precipitate-dissolved region, postweld aging markedly increases the density of strengthening precipitates and leads to a large increase in hardness. On the other hand, aging forms few new precipitates in the precipitate-coarsened region, which shows a slight increase in hardness. The postweld aging at 443 K for 43.2 ks (12 hours) gives greater hardness in the overall weld than in the as-received base material and shifts the minimum hardness from the as-welded minimum hardness region to the precipitate-coarsened region. These hardness changes are consistent with the subsequent precipitation behavior during postweld aging. The postweld solution heat treatment (SHT) and aging achieve a high density of strengthening precipitates and bring a high hardness homogeneously in the overall weld.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.