We investigated optical properties of In-flushed InAs quantum dots (QDs) grown on a GaAs substrate by molecular beam epitaxy. By using the In-flush technique for setting the height of self-assembled InAs QDs, we have tuned the emission wavelength of InAs QDs to the ~1 μm regime, which can be utilized as a non-invasive and deeply penetrative probe for biological and medical imaging systems. The controlled emission exhibited a broadband spectrum comprising multiple peaks with an interval of approximately 30 meV. We examined the origin of the multiple peaks using spectral and time-resolved photoluminescence, and concluded that it is attributed to monolayer step fluctuations in the height of the In-flushed QDs. This feature can be advantageous for realizing a broadband light source centered at the ~1 μm regime, which is especially suitable for the non-invasive cross-sectional biological and medical imaging system known as optical coherence tomography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.