The long-term dynamics of mobile plasmids in natural environments are unclear. This is the first study of the long-term dynamics of introduced plasmids with xenobiotic degradation abilities using a mathematical model that describes the horizontal gene transfer (HGT) of plasmids into indigenous bacteria via conjugation. We focussed on negative feedback between the spread of plasmids and their selective advantage, i.e. the severe competition between plasmid-bearing and plasmid-free bacteria resulting from a decrease in xenobiotic concentration caused by the gene expression of plasmids, favoring plasmid-free bacteria. Two types of HGT enhanced the persistence of plasmids and the degradation of the xenobiotic in different conditions: a relatively low rate of 'intergeneric HGT' from introduced to indigenous bacteria and a high rate of 'intraindigenous HGT' from indigenous to indigenous bacteria. In addition, when the indigenous resource supply rate was high and when the cost of bearing plasmids was low, both types of HGT made large contributions to xenobiotic degradation compared to the contribution of vertical transfer via plasmid replication within the introduced host population. Initial conditions were also important; a higher initial density of introduced plasmid-bearing bacteria led to a lower degradation rate over a long time scale.
Changes of bacterioplankton diversity in lake water were followed in triplicate, continuous‐flow experimental tanks. Most probable numbers (MPN) were obtained for 95 different carbon sources using BIOLOG plates and were used to characterize bacterioplankton diversity. During 70 days of incubation, MPN declined for 15 of the 95 substrates while three of 95 appeared to be newly used, indicating functional succession in the bacterioplankton. Total bacterial cell abundance was constant from day 7 to day 70 of the incubation period. The succession of species composition of phyto‐ and zooplankton was also observed and suggested some involvement by phyto‐ and zooplankton species in the changes of bacterioplankton diversity. Thus, BIOLOG‐based MPN assays is a simple but sensitive method for characterizing the changes in the bacterioplankton carbon utilization profile and is also useful for tracing the functional succession of bacterioplankton diversity within a community.
Conjugal plasmid transfer from Escherichia coli S17-1 (pBHR1) to Pseudomonas stutzeri was investigated in the presence of a cyanophyta Microcystis aeruginosa. The plasmid transfer frequency increased with higher densities of M. aeruginosa. The extracellular metabolic products (EMPs) from M. aeruginosa were found to enhance the plasmid transfer between bacteria. Furthermore, the plasmid transfer frequency in medium containing EMPs was significantly higher than that in culture medium with or without glucose. These results suggest that M. aeruginosa enhances conjugal plasmid transfer between bacteria through its EMPs, and that identity of the carbon source is an important factor affecting conjugal plasmid transfer in aquatic environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.