Odorant identity is represented in the olfactory bulb (OB) by the glomerular activity pattern, which reflects a combination of activated odorant receptors (ORs) in the olfactory epithelium. To elucidate this neuronal circuit at the molecular level, we established a functional OR identification strategy based on glomerular activity by combining in vivo Ca(2+) imaging, retrograde dye labeling, and single-cell RT-PCR. Spatial and functional mapping of OR-defined glomeruli revealed that the glomerular positional relationship varied considerably between individual animals, resulting in different OR maps in the OB. Notably, OR-defined glomeruli exhibited different ligand spectra and far higher sensitivity compared to the in vitro pharmacological properties of corresponding ORs. Moreover, we found that the olfactory mucus was an important factor in the regulation of in vivo odorant responsiveness. Our results provide a methodology to examine in vivo glomerular responses at the receptor level and further help address the long-standing issues of olfactory sensitivity and specificity under physiological conditions.
The mouse olfactory mucosa is a complex chemosensory tissue composed of multiple cell types, neuronal and non-neuronal. We have here applied RNA-seq hierarchically, in three steps of decreasing cellular heterogeneity: starting with crude tissue samples dissected from the nose, proceeding to flow-cytometrically sorted pools of mature olfactory sensory neurons (OSNs), and finally arriving at single mature OSNs. We show that 98.9% of intact olfactory receptor (OR) genes are expressed in mature OSNs. We uncover a hitherto unknown bipartition among mature OSNs. We find that 19 of 21 single mature OSNs each express a single intact OR gene abundantly, consistent with the one neuron-one receptor rule. For the 9 single OSNs where the two alleles of the abundantly expressed OR gene exhibit single-nucleotide polymorphisms, we demonstrate that monoallelic expression of the abundantly expressed OR gene is extremely tight. The remaining two single mature OSNs lack OR gene expression but express Trpc2 and Gucy1b2. We establish these two cells as a neuronal cell type that is fundamentally distinct from canonical, OR-expressing OSNs and that is defined by the differential, higher expression of 55 genes. We propose this tiered experimental approach as a paradigm to unravel gene expression in other cellularly heterogeneous systems.
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist-OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality.
From the approximately 1,200 odorant receptor (OR) genes in the mouse genome, an olfactory sensory neuron is thought to express only one gene. The mechanisms of OR gene choice are not understood. A 2.1 kilobase region (the H element) adjacent to a cluster of seven OR genes has been proposed as a trans- and pan-enhancer for OR gene expression. Here, we deleted the H element by gene targeting in mice. The deletion abolishes expression of a family of three OR genes proximal to H, and H operates in cis on these genes. Deletion of H has a graded effect on expression of a distal group of four OR genes, commensurate with genomic distance. There is no demonstrable effect on expression of OR genes located outside the cluster. Our findings are not consistent with the hypothesis of H as an essential trans-acting enhancer for genome-wide regulation of OR gene expression.
First described in 1973, the Grueneberg ganglion (GG) is an arrow-shaped neuronal structure at the anterior end of the nasal cavity. It lines both sides of the nasal septum, within the nasal vestibule, close to the opening of the naris. The functions of the GG and the pattern of projections to the brain are not known. Here, we report that neurons of the mouse GG express olfactory marker protein, which is normally expressed in mature olfactory or vomeronasal sensory neurons. The approx. 500 cells in each GG are arranged in several densely packed cell clusters. Individual cells give rise to single axons, which fasciculate to form a nerve bundle that projects caudally. The axons terminate in glomeruli of the olfactory bulb, one or two large glomeruli associated with a semicircle of up to 10 smaller, somewhat diffusely organized glomeruli that surround the most anterior part of the accessory olfactory bulb. Development of the GG starts around embryonic day 16 and appears to be completed at birth; cell numbers then undergo a minor decrease during postnatal development. The strategic location of the GG, expression of olfactory marker protein, axonal projections to glomeruli at particular locations in the olfactory bulb and early development suggest that this neuronal structure performs specific chemosensory functions at neonatal stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.