Aflatoxins are toxic and carcinogenic secondary metabolites produced by Aspergillus flavus and A. parasiticus. The contamination of crops, feeds, and foods with aflatoxins can have serious effects on the health of humans and animals. Although many studies have been done to develop aflatoxin-control strategies, most are limited in their effectiveness. As part of an effort to develop control procedures, we have devised simple and safe methods that are useful for identifying microorganisms that effectively inhibit aflatoxin production by fungi. These include the microtitre agar plate assay using norsolorinic acid-accumulating mutant fungi, the ultraviolet light photography method using an instant film, the tip culture method, a convenient RNA extraction method for reverse transcription-polymerase chain reaction (RT-PCR) analysis, and other methods. Results of a recent trial have shown that Achromobacter xylosoxidans significantly inhibited aflatoxin production by A. parsiticus, and that the main inhibitory substance produced by the bacterium was cyclo(L-leucyl-L-prolyl). This result confirms that the methods described herein are useful for identifying microorganisms that inhibit aflatoxin production by fungi and could contribute to the development of methods to reduce aflatoxin contamination in commodities.
Screening for microorganisms that inhibit aflatoxin production from environments showed that Penicillium citrinum inhibited aflatoxin production by Aspergillus parasiticus. The inhibitory substance in the culture medium of P. citrinum was confirmed to be citrinin (CTN). RT-PCR analyses showed that CTN did not inhibit expressions of aflatoxin biosynthetic genes (aflR, pksL1, and fas-1) of A. parasiticus, whereas feeding experiments using A. parasiticus showed that CTN inhibited the in vivo conversion of dihydrosterigmatocystin to AFB2·AFG2. These results suggest that CTN inhibits a certain post-transcriptional step in aflatoxin biosynthesis. CTN in the culture medium of A. parasiticus was found to be decreased or lost with time, suggesting that a certain metabolite produced by A. parasiticus is the cause of the CTN decrease; we then purified, characterized, and then analyzed the substance. Physico-chemical analyses confirmed that the metabolite causing a decrease in CTN fluorescence was kojic acid (KA) and the resulting product was identified as a novel substance: (1R,3S,4R)-3,4-dihydro-6,8-dihydroxy-1-(3-hydroxy-6-(hydroxymethyl)-4-oxo-4H-pyran-2-yl)-3,4,5-trimethyl-1H-isochromene-7-carboxylic acid, which was named “CTN-KA adduct”. Our examination of the metabolites’ toxicities revealed that unlike CTN, the CTN-KA adduct did not inhibit aflatoxin production by A. parasiticus. These results indicate that CTN’s toxicity was alleviated with KA by converting CTN to the CTN-KA adduct.
Our previous work showed that citrinin (CTN) produced bay Penicillium citrinum inhibited the production of aflatoxin by Aspergillus parasiticus. We also reported that CTN was non-enzymatically converted to a novel CTN-KA adduct with kojic acid (KA) in aqueous condition. We herein observed that unlike CTN, the CTN-KA adduct does not show antimicrobial activity against Escherichia coli or Bacillus subtilis or any cytotoxic effect on HeLa cells, suggesting that CTN was detoxified by KA by the formation of the CTN-KA adduct. To examine the function of KA production by fungi, we isolated A. parasiticus mutants with impaired KA production. When the mutants were incubated in either liquid or agar medium supplemented with CTN, they were more susceptible to CTN than the wild KA-producing strain. The same results were obtained when we used the A. oryzae KA-producing strain RIB40 and KA-non-producing strains. When KA was added to the CTN-containing agar medium, the inhibition of growth by CTN was remarkably mitigated, suggesting that the production of KA protected the fungal growth from CTN’s toxicity. We also observed that CTN enhanced the production of KA by A. parasiticus as well as A. oryzae strains. Reverse transcription-PCR showed that CTN enhanced the expression of KA biosynthetic genes (kojA, kojR, and kojT) of A. parasiticus. However, the enhancement of KA production with CTN was repressed by the addition of α-tocopherol or butylated hydroxy anisole, suggesting that KA production is enhanced by oxidative stress via the formation of reactive oxygen species caused by CTN. In contrast, α−tocopherol did not affect inhibition of AF production as well as fungal growth by CTN, suggesting that the regulation of these inhibitions with CTN might be different from that of KA production. We propose a regulation scheme of CTN for each of KA production, AF production, and fungal growth in A. parasiticus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.