Deletion mutations constitute an important class of mutations that may result in a variety of human diseases, including cancer. Although many chemicals and ionizing radiations induce deletions, this class of mutation has been poorly characterized at the molecular level, particularly in vivo. Here we report the molecular nature of deletions as well as base substitutions induced by antitumor antibiotic mitomycin C (MMC) in the bone marrow using a novel transgenic mouse, gpt delta. In this mouse model, deletions and point mutations in lambda DNA integrated in the chromosome are individually selected as Spi(-) (sensitive to P2 interference) phages and 6-thioguanine-resistant bacterial colonies, respectively. The mice were treated with MMC (1 mg/kg/day) for five consecutive days. One week after the last treatment, lambda phage was rescued from the genomic DNA of the bone marrow by in vitro packaging reactions and subjected to Spi(-) and 6-thioguanine selections. The mutant frequency of Spi(-) with large deletions increased more than 20-fold over that of the control. Molecular sizes of the large deletions were mostly more than 2,000 base pairs. The large deletions frequently occurred between two short direct repeat sequences from 2 to 6 base pairs, suggesting that they are generated during the end-joining repair of double-strand breaks induced by interstrand cross-links in DNA. In 6-thioguanine selection, tandem-base substitutions, such as 5'-GG-3' to 5'-AT-3', were induced. It highlights the relevance of intrastrand cross-links as genotoxic lesions. Previous in vitro studies report the induction of single-base substitutions and single-base deletions by MMC. However, no such mutations were identified in vivo. Thus, our results strongly caution that in vitro mutation spectra do not necessarily reflect genotoxic events in vivo and emphasize the importance of transgenic rodent genotoxicity assays to examine the roles of DNA adducts in mutagenesis and carcinogenesis.
This study was conducted to elucidate the pathologic conditions of cerebral circulatory disorders in idiopathic normal pressure hydrocephalus (iNPH). Among 44 possible iNPH patients, 40 patients underwent shunt surgery based on diagnostic flow charts plotted by the Southern Tohoku method and were evaluated to be shunt-effective at the end of the first post-surgical month. The cerebral blood flow (CBF) was measured by N-isopropyl-( 123 I)-P-iodo-amphetamine single photon emission computed tomography (mean, mCBF; cortical region, cCBF; thalamus-basal ganglia region, tbCBF on autoradiography [ARG] method) and the perfusion patterns of the cerebral cortex were measured based on threedimensional stereotactic surface projection (3D-SSP) Z-score images, before and 1 month after the surgery in all 40 subjects. The mCBF rose significantly from 32.1 ± 2.74 ml/100 g/min before surgery to 39.8 ± 3.02 ml/100 g/min after surgery (p º 0.03). Investigation of the change of CBF revealed reductions in the cCBF (3 cases), tbCBF (9 cases), and cCBF + tbCBF (28 cases), with the reduced-cCBF group totaling 31 cases and the reduced-tbCBF group totaling 37 cases. Investigation of cerebral cortex hypoperfusion by 3D-SSP Z-score revealed 31 cases with hypoperfusion (frontal lobe type [19 cases], occipitotemporal lobe type [5 cases], mixed type [7 cases]) and nine cases with cortical normoperfusion (N). The pattern of reduction of the cortical blood flow on ARG method was favorably correlated with the pattern of hypoperfusion of the cerebral cortex on 3D-SSP Z-score images before surgery. A reduction of blood flow was found in the thalamus-basal ganglia region of all N type cases. The blood flow improved in 19 of 31 (61.3%) cases of the reduced-cCBF group and in 32 of 37 (86.5%) cases of the reducedtbCBF group. All of the cases without detectable improvement exhibited increased blood flow in nonreduction areas. Investigation of the hypoperfusion patterns of the cerebral cortex on 3D-SSP Z-score images, revealed a reduction or disappearance of the hypoperfusion site in 19 of 31 (61.3%) cases, either no-change or a shift of the hypoperfusion site in 12 of 31 (38.7%) cases, and a correlation between the pattern of cortical blood flow reduction on ARG method and the pattern of cerebral cortex hypoperfusion on 3D-SSP Z-score images after surgery. Cerebral circulatory disorders in iNPH manifest as either of two pathophysiological conditions: the``circulatory disorder of the cerebral cortical region'' and thè`c irculatory disorder of the thalamus-basal ganglia region.'' Various patterns develop according to the disease stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.