Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches.
The transition of a Mott insulator to metal, the Mott transition, can occur via carrier doping by elemental substitution, and by photoirradiation, as observed in transition-metal compounds and in organic materials. Here, we show that the application of a strong electric field can induce a Mott transition by a new pathway, namely through impulsive dielectric breakdown. Irradiation of a terahertz electric-field pulse on an ET-based compound, κ-(ET) Cu[N(CN)]Br (ET:bis(ethylenedithio)tetrathiafulvalene), collapses the original Mott gap of ∼30 meV with a ∼0.1 ps time constant after doublon-holon pair productions by quantum tunnelling processes, as indicated by the nonlinear increase of Drude-like low-energy spectral weights. Additionally, we demonstrate metallization using this method is faster than that by a femtosecond laser-pulse irradiation and that the transition dynamics are more electronic and coherent. Thus, strong terahertz-pulse irradiation is an effective approach to achieve a purely electronic Mott transition, enhancing the understanding of its quantum nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.