Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches.
We report the synthetic route of two ruthenium dye-sensitizers; namely, Ru(4,4-dicarboxylic-2,2-bipyridine)(1,10-phenanthroline)(NCS)2 (6) and Ru(4,4-dicarboxylic-2,2-bipyridine)(1,10-phenanthroline-5-carboxylic acid)(NCS)2 (7), which both complexes were characterized by 1H NMR, 13C NMR and UV-Vis spectroscopic techniques.
Iridium complexes are particularly essential and have been intensively utilized as emissive phosphorescence emitters for efficient phosphorescent electroluminescent (EL) devices. In order to improve the EL performance, a series of...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.