Qatar, a country with a strong health system and a diverse population consisting mainly of expatriate residents, has experienced two large waves of COVID-19 outbreak. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population’s genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number of mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. These findings raise the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor the SARS-CoV-2 profile and re-emergence in Qatar.
The state of Qatar has emerged as a major transit hub connecting all parts of the globe, making it as a hotspot for infectious disease introduction and providing an ideal setting to monitor the emergence and spread of variants. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population's genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number in the mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. This raises the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor SARS-CoV-2 profile and re-emergence in Qatar.
There is limited seroepidemiological evidence on the magnitude and long-term durability of antibody titers of mRNA and non-mRNA vaccines in the Qatari population. This study was conducted to generate evidence on long-term anti-S IgG antibody titers and their dynamics in individuals who have completed a primary COVID-19 vaccination schedule. A total of 300 male participants who received any of the following vaccines BNT162b2/Comirnaty, mRNA-1273, ChAdOx1-S/Covishield, COVID-19 Vaccine Janssen/Johnson, or BBIBP-CorV or Covaxin were enrolled in our study. All sera samples were tested by chemiluminescent microparticle immunoassay (CMIA) for the quantitative determination of IgG antibodies to SARS-CoV-2, receptor-binding domain (RBD) of the S1 subunit of the spike protein of SARS-CoV-2. Antibodies against SARS-CoV-2 nucleocapsid (SARS-CoV-2 N-protein IgG) were also determined. Kaplan–Meier survival curves were used to compare the time from the last dose of the primary vaccination schedule to the time by which anti-S IgG antibody titers fell into the lowest quartile (range of values collected) for the mRNA and non-mRNA vaccines. Participants vaccinated with mRNA vaccines had higher median anti-S IgG antibody titers. Participants vaccinated with the mRNA-1273 vaccine had the highest median anti-S-antibody level of 13,720.9 AU/mL (IQR 6426.5 to 30,185.6 AU/mL) followed by BNT162b2 (median, 7570.9 AU/mL; IQR, 3757.9 to 16,577.4 AU/mL); while the median anti-S antibody titer for non-mRNA vaccinated participants was 3759.7 AU/mL (IQR, 2059.7–5693.5 AU/mL). The median time to reach the lowest quartile was 3.53 months (IQR, 2.2–4.5 months) and 7.63 months (IQR, 6.3–8.4 months) for the non-mRNA vaccine recipients and Pfizer vaccine recipients, respectively. However, more than 50% of the Moderna vaccine recipients did not reach the lowest quartile by the end of the follow-up period. This evidence on anti-S IgG antibody titers should be considered for informing decisions on the durability of the neutralizing activity and thus protection against infection after the full course of primary vaccination in individuals receiving different type (mRNA verus non-mRNA) vaccines and those with natural infection.
Background: There is limited sero epidemiological evidence on the magnitude and long-term durability of antibody titers of mRNA and non-mRNA vaccines in the Qatari population. This study was conducted to generate evidence on long-term anti-S IgG antibodies titers and their dynamics in individuals who have completed a primary COVID-19 vaccination schedule. Methods: A total of 300 participants who received any of the following vaccines BNT162b2/Comirnaty or mRNA-1273 or ChAdOx1-S/Covishield or COVID-19 Vaccine Janssen/Johnson or BBIBP-CorV or Covaxin were enrolled in our study. All sera samples were tested by chemiluminescent microparticle immunoassay (CMIA) for the quantitative determination of IgG antibodies to SARS-CoV-2, receptor-binding domain (RBD) of the S1 subunit of the spike protein of SARS-CoV-2. Antibodies against SARS-CoV-2 nucleocapsid (SARS-CoV-2 N-protein IgG) were also determined. Kaplan-Meier survival curves were used to compare the time from the last dose of the primary vaccination schedule to the time by which anti-S IgG antibodies titers fell into the lowest quartile (range of values collected) for the mRNA and non-mRNA vaccines. Results: Participants vaccinated with mRNA vaccines had higher median anti-S IgG antibody titers. Participants vaccinated with the mRNA-1273 vaccine had the highest median anti-S-antibody level of 13720.9 AU/mL (IQR 6426.5 to 30185.6 AU/mL) followed by BNT162b2 (median, 7570.9 AU/ml; IQR, 3757.9 to 16577.4 AU/mL); while the median anti-S antibody titer for non-mRNA vaccinated participants was 3759.7 AU/mL (IQR, 2059.7-5693.5 AU/mL). The median time to reach the lowest quartile was 3.53 months (IQR, 2.2-4.5 months) and 7.63 months (IQR, 6.3-8.4 months) for the non-mRNA vaccine recipients and Pfizer vaccine recipients, respectively. However, more than 50% of the Moderna vaccine recipients did not reach the lowest quartile by the end of the follow-up period. Conclusions: This evidence on anti-S IgG antibody titers, their durability and decay over time should be considered for the utility of these assays in transmission dynamics after the full course of primary vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.