<p><span id="docs-internal-guid-d3b7bd3f-7fff-cc00-182f-e3199a97eb45"><span>Cangkang kepiting bakau (</span><span>Scylla serrata</span><span>) mengandung senyawa kitin yang dapat ditransformasi menjadi kitosan sebagai bahan pembuatan kapsul obat. Proses transfomasi ini masih perlu untuk dikembangkan lanjut. Penelitian ini bertujuan untuk menghasilkan kapsul obat berbahan dasar cangkang kepiting bakau dengan metode </span><span>microwave</span><span>. Metode isolasi kitin dari cangkang kepiting bakau meliputi proses deproteinasi, demineralisasi, dan dekolorisasi. Sintesis kitosan menggunakan metode </span><span>microwave </span><span>(daya 450 watt selama 15 menit) dalam pelarut NaOH 50% (b/v) dengan perbandingan 1:20 (b/v), selanjutnya kitosan dihidrolisis menggunakan larutan HCl 20% (v/v) untuk menghasilkan glukosamin hidroklorida (GlcN HCl). Pembuatan kapsul obat dengan perbandingan GlcN HCl dan larutan sukrosa yaitu masing-masing 3:1, 3:3, dan 3:5. Rendemen kitosan yang diperoleh sebanyak 37,5% dengan derajat deasetilasi 83,8%. Kapsul obat diperoleh perlakuan terbaik pada perbandingan GlcN HCl-larutan sukrosa 3:1. Berdasarkan analisis terhadap spektra kapsul obat, diidentifikasi adanya gugus O−H, −CH</span><span><span>3</span></span><span>, N−H, C−N, C−O, dan β-1,4-glikosidik. Karakteristik sifat fisik menunjukkan bahwa kapsul obat memiliki kadar air 12,7%, uji waktu hancur 13 menit 34 detik dan kelarutan dalam asam 3 menit 17 detik. Hasil penelitian menunjukkan bahwa kitosan cangkang kepiting bakau telah memenuhi kriteria bahan dasar kapsul obat sesuai kriteria farmakope Indonesia.</span></span></p><p><span><span><span id="docs-internal-guid-2e94a9c8-7fff-0821-25f9-df9a4ae907c6"><strong>Utilization of Chitosan from Mangrove Crab Shell (Scylla serrata</strong><span><strong>) using the Microwave Method as a Base Material for Medicinal Capsules</strong>. </span><span>The mangrove crab shell (</span><span>Scylla</span><span>serrata</span><span>) contains a chitin compound potentially transformed into chitosan as an ingredient for medicinal capsules. The research on this transformation process needs further developments. This research aims to produce chitin-based medicinal capsules of mangrove crab shells by microwave methods. The chitin isolation method of mangrove crab shells covers the process of deproteinization, demineralization, and decoloration. The synthesis of chitosan used microwave methods (450 watts of power for 15 minutes) in the solvent of 50% NaOH (w/v) with a ratio of 1:20 (b/v). Chitosan was then hydrolyzed using 20% HCl (v/v) solution to produce glucosamine hydrochloride (GlcN HCl). Preparation of drug capsules with a ratio of GlcN HCl and sucrose solution, namely 3:1, 3:3, and 3:5, respectively. The chitosan yield was obtained as much as 37.5% with a deacetylation degree of 83.8%. The best treatment of the medicinal capsules was obtained on the ratio of GlcN HCl and sucrose solution 3:1. The FTIR analysis of medicinal capsules are identified by the presence of the O−H, −CH</span><span><span>3</span></span><span>, N−H, C−N, C−O, and β-1.4-glycosidic. The physical characterization showed that the medicinal capsules have a water content of 12.7%, the test of destroyed time of 13 minutes 34 seconds, and soluble in acid that is 3 minutes 17 seconds. The results show that chitosan prepared from mangrove crab shell is potentially used as a basic ingredient for medicinal capsules because it met the criteria for Indonesian pharmacopoeial capsules.</span></span></span></span></p><p><span><span><br /></span></span></p>
<p>Sintesis kitosan telah dikembangkan dengan metode pemanasan <em>microwave </em>(MW) menggunakan pelarut alkali untuk kebutuhan berbagai aplikasi yang salah satunya sebagai membran immobilisasi enzim. Penelitian membran kitosan dengan immobilisasi enzim asetilkolinesterase (AChE) sebagai elektrode biosensor terus berkembang untuk menghasilkan perangkat mutakhir yang dapat mendeteksi pestisida. Penelitian ini bertujuan untuk menghasilkan biosensor berbasis elektrode membran Au/Kitosan/GTA/AChE untuk deteksi pestisida karbaril yang memiliki batas deteksi yang rendah, sensitivitas yang tinggi, waktu respon cepat dan presisi yang baik. Kitosan dihasilkan dari isolasi kitin dari kulit udang menggunakan alat MW dan pelarut NaOH dengan daya 450 Watt selama 15 menit menghasilkan rendemen sebesar 31,50%. Karakterisasi FTIR kitosan diidentifikasi adanya gugus O–H, C–N, N–H amina, dan C=O dengan intensitas yang rendah serta derajat deasetilasi rata-rata 95,6 ± 0,1%. Komposisi elektrode membran Au/Kitosan/GTA/AChE menggunakan kitosan dengan variasi konsentrasi 2, 5, dan 8% (b/v) dan glutaraldehid (GTA) 25%, kawat Au dan diimobilisasikan enzim asetilkolinesterase (AChE). Elektrode membran Au/Kitosan 2%/GTA/AChE memiliki karakteristik yang baik dimana nilai sensitivitas sebesar 23,318 mV.dekade<sup>-1</sup> pada rentang konsentrasi pestisida 10<sup>-7 </sup>– 10<sup>-1</sup> µg mL<sup>-1</sup> dengan batas deteksi (LoD) 1 × 10<sup>-7 </sup>µg mL<sup>-1</sup>. Waktu respon yang diperoleh yaitu pada rentang waktu 5– 7 menit dengan <em>relative standard deviation</em> (RSD) sebesar 0,588%. Biosensor yang dikembangkan menunjukkan sensitivitas, stabilitas dan reproduktifitas yang baik, sehingga elektrode membran Au/Kitosan/GTA/AChE menjanjikan untuk alat deteksi pestisida. </p><p><strong>Synthesis of Chitosan from Shrimp Shell as Electrode Membrane Material Au/Chitosan/GTA/AChE for Pesticide Detection. </strong>Chitosan synthesis has been developed using the heating by microwave (MW) method using alkaline solvents for various applications, one of which is an enzyme immobilization membrane. Chitosan membrane research with immobilization of the enzyme Acetylcholinesterase (AChE) as a biosensor electrode developed to produce advanced devices that can detect pesticides. This study aims to produce a biosensor based on Au/Chitosan/GTA/AChE membrane electrodes to detect carbaryl pesticides with a low detection limit, high sensitivity, fast response time, and good precision. Chitosan was produced from the isolation of chitin from shrimp shells using an MW device and NaOH solvent with a power of 450 Watts for 15 minutes to produce a yield of 31.50%. The FTIR characterization of chitosan identified the presence of O–H, C–H, C–N, N–H amine groups and C=O with low intensity and the average degree of deacetylation of 95.6 ± 0.1%. The composition of Au/Chitosan/GTA/AChE membrane electrodes used chitosan with various concentrations of 2, 5, and 8% (w/v) and glutaraldehyde (GTA) 25% on Au wire and immobilized with AChE enzyme. The Au/Chitosan 2%/GTA/AChE membrane electrode has good characteristics where the sensitivity value is 23.318 mV.decade<sup>-1</sup> in the pesticide concentration range of 10<sup>-7 </sup>– 10<sup>-1</sup> µg mL<sup>-1</sup> with a detection limit (LoD) of 1 × 10<sup>-7</sup> µg mL<sup>-1</sup>. The response time obtained is in the range of 5 ‒ 7 minutes with a relative standard deviation (RSD) of 0.588%. The developed biosensor shows good sensitivity, stability, and reproducibility, thus Au/Chitosan/GTA/AChE membrane electrodes are promising for pesticide detection.</p>
Novel, sensitive, selective, efficient and portable electrochemical biosensors are needed to detect residual contaminants of the pesticide 1-naphthyl methylcarbamate (carbaryl) in the environment, food, and essential biological fluids. In this work, a study of nanocomposite-based Ag reduced graphene oxide (rGO) and chitosan (CS) that optimise surface conditions for immobilisation of acetylcholinesterase (AChE) enzyme to improve the performance of catalytic biosensors is examined. The Ag/rGO/CS nanocomposite membrane was used to determine carbaryl pesticide using a potentiometer transducer. The AChE enzyme-based biosensor exhibits a good affinity for acetylthiocholine chloride (ATCl). It can catalyse the hydrolysis of ATCl with a potential value of 197.06 mV, which is then oxidised to produce a detectable and rapid response. Under optimal conditions, the biosensor detected carbaryl pesticide at concentrations in the linear range of 1.0 × 10−8 to 1.0 μg mL−1 with a limit of detection (LoD) of 1.0 × 10−9 μg mL−1. The developed biosensor exhibits a wide working concentration range, detection at low concentrations, high sensitivity, acceptable stability, reproducibility and simple fabrication, thus providing a promising tool for pesticide residue analysis.
The Cocoa pod husk (CPH) is a processed cocoa fruit waste, containing lignocellulosic biomass which can be pyrolysis to produce liquid smoke. The purpose of this study was to obtain antibacterial material from liquid smoke using the CPH pyrolysis method. This research method includes: preparation by drying the CPH raw materials for 5-7 days and then chopping the CPH sample dry. Furthermore, the pyrolysis process is carried out at 385-500 °C with a heating flow rate of 6 °C/min. The liquid smoke crude obtained is filtered and distilled fractionated to produce clearer liquid smoke. Analysis of Total Phenolic Content (TPC) of liquid smoke was carried out by the Folin-Ciocalteu (FC) method using gallic acid standards and Ultraviolet-Visible spectrophotometer instruments at maximum wavelength (λmax) 765 nm. The CPH liquid smoke antibacterial test was carried out using a dilution method with variations in liquid smoke concentrations of 5, 7, 10and 15%. The TPC of CPH liquid smoke is 1.035 g / L.The spectrogram analysis of Gas Chromatography-Mass spectroscopy (GC-MS) of CPH liquid smoke shows the presence of compounds:acetic acid, Methyl glyoxal,Pyridine, 4-methyl- pyridine, 4-[2(methylamino)ethyl]- Phenol.The results of the analysis of the minimum inhibitory concentration (MIC) of CPH liquid smoke against Escherichia coli and Staphylococcus aureus bacteria were obtained at a concentration of 15%.This study shows that pyrolysis extraction can be used as a technique for obtaining extracts of phenolic compounds from CPH and is promising for safe antibacterial agents.Keywords: CPH, liquid smoke, pyrolysis, Phenolic, antibacterial.Abstrak Kulit buah kakao (KBK) merupakan limbah hasil olahan buah kakao, mengandung biomassa lignoselulosa yang dapat dipirolisis menghasilkan asap cair.Tujuan penelitian ini untuk mendapatkan zat antibakteri dari asap cair dengan metode pirolisis KBK. Metode penelitian ini meliputi: preparasi dengan pengeringan bahan baku KBK selama 5-7 hari kemudian dilakukan pencacahan sampel KBK kering. Selanjutnya, Proses pirolisis dilakukan pada suhu 385-500°C dengan kecepatan alir pemanasan 6°C/menit.Crude asap cair yang diperoleh difiltrasi dan didestilasi fraksinasi untuk menghasilkan asap cair yang lebih jernih. AnalisisTotal Phenolic Content (TPC) asap cair dilakukan dengan metode Folin-Ciocalteu (FC) menggunakan standar asam galat dan instrumen spektrofotometer Ultraviolet-Visible pada panjang gelombang maksimum (λmaks) 765 nm. Uji antibakteri asap cair KBK dilakukan menggunakan metode dilusi dengan variasi konsentrasi asap cair yaitu 5, 7, 10dan 15%. TPC asap cair KBK sebesar 1,035 g/L.Analisis spectrogram Gas Chromatography-Mass spectroscopy (GC-MS) asap cair KBK menunjukkan adanya senyawa: asam asetat, metil glioksal, piridin, 4-metil-piridin, 4-[2(metilamino) etil]-fenol. Hasil analisiskonsentrasi hambat minimum (KHM) asap cairKBKterhadap bakteri Escherichia coli dan Staphylococcus aureus didapatkan pada konsentrasi 15%.Studi ini menunjukkan bahwa ekstraksi pirolisis dapat digunakan sebagai teknik untuk memperoleh ekstrak senyawa fenolik dari CPH dan menjanjikan untuk bahan antibakteri yang aman.Kata kunci: KBK, asap cair, pirolisis, fenolik, antibakteri.
The need to control pesticide residues in foodstuffs in a fast and straightforward analysis for the field scale is required. Therefore, this research develops a transducer-based biosensor with a small device potentiometer (SDP) to produce a fast and accurate pesticide detection tool. The biosensor based on Au electrodes by immobilizing the acetylcholinesterase (AChE) enzyme coated membrane cellulose acetate (CA) 15% (w/v) cross-linked glutaraldehyde (GA) 25% (v/v) and SDP as a transducer that produces a potential value. The biosensor testing results on the organophosphate pesticide class, namely diazinon and profenofos, showed the sensitivity of 21.204 and 20.035 mV decade−1, Limit of Detection (LoD) 10−7 mg L−1, selectivity coefficient −1 < Ki,j < 1 and accuracy of 99.497 and 94.765%, respectively. The results showed that the biosensor connected to an SDP transducer had an excellent performance in determining the presence of organophosphate pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.