In this article, the effects of a Casson Nanofluid boundary layer flow, over an inclined extending surface with Soret and Dufour, is scrutinized. The model used in this study is based on the Buongiorno model of the thermal efficiencies of the fluid flows in the presence of Brownian motion and thermophoresis properties. The non-linear problem for Casson Nanofluid flow over an inclined channel is modeled to gain knowledge on the heat and mass exchange phenomenon, by considering important flow parameters of the intensified boundary layer. The governing non-linear partial differential equations are changed to non-linear ordinary differential equations and are afterward illustrated numerically by the Keller-Box scheme. A comparison of the established results, if the incorporated effects are lacking, is performed with the available outcomes of Khan and Pop [1] and recognized in a nice settlement. Numerical and graphical results are also presented in tables and graphs.
In this paper, micropolar nanofluid boundary layer flow over a linear inclined stretching surface with the magnetic effect is investigated. Buongiorno’s model utilized in this study for the thermal efficiencies of the fluid flow in the presence of Brownian motion and thermophoresis properties. The nonlinear problem for micropolar nanofluid flow over an inclined sheet is established to study the heat and mass exchange phenomenon by considering portent flow parameters to strengthen the boundary layers. The governing nonlinear partial differential equations are changed to nonlinear ordinary differential equations by using suitable similarity transformations and then solved numerically by applying the Keller-Box method. A comparison of the setup results in the absence of the incorporated impacts is performed with the accessible results and perceived in a decent settlement. Numerical and graphical outcomes are additionally presented in tables and diagrams.
In this problem, an examination of Casson Nanofluid boundary layer flow over linear slanted extending sheet by fusing the chemical reaction and heat generation impacts are under thought. Nanofluid demonstrate in this examination is developed on Buongiorno model for the thermal efficiencies of the liquid flow in the presence of Brownian movements and thermophoresis impacts. The nonlinear issue for Casson Nanofluid flow over slanted channel is displayed to ponder the heat and mass exchange wonder by considering portant flow parameters to strengthen the boundary layers. The governing nonlinear partial differential equations are decreased to nonlinear normal differential equations and afterward illustrated numerically by methods for the Keller-Box plot. An examination of the set up results in the absence of the joined impacts is performed with the accessible outcomes of Khan and Pop [1] and set up in a decent contract. Numerical and graphical outcomes are additionally exhibited in tables and graphs.
The principal objective of the current study is to analyze the Brownian motion and thermophoretic impacts on micropolar nanofluid flow over a nonlinear inclined stretching sheet taking into account the Soret and Dufour effects. The compatible similarity transformations are applied to obtain the nonlinear ordinary differential equations from the partial differential equations. The numerical solution of the present study obtained via the Keller-Box technique. The physical quantities of interest are skin friction, Sherwood number, and heat exchange, along with several influences of material parameters on the momentum, temperature, and concentration are elucidated and clarified with diagrams. A decent settlement can be established in the current results with previously published work in the deficiency of incorporating effects. It is found that the growth of the inclination and nonlinear stretching factor decreases the velocity profile. Moreover, the growth of the Soret effect reduces the heat flux rate and wall shear stress.
Brownian motion and thermophoresis diffusions are the fundamental ideas of abnormal upgrading in thermal conductivity via binary fluids (base fluid along with nanoparticles). The influence of Brownian motion and thermophoresis are focused on in the Buongiorno model. In this problem, we considered the Buongiorno model with Brownian motion and thermophoretic effects. The nonlinear ordinary differential equations are recovered from the partial differential equations of the boundary flow via compatible similarity transformations and then employed to the Keller-box scheme for numerical results. The physical quantities of our concern including skin friction, Nusselt number, and Sherwood number along with velocity, temperature and concentration profile against involved effects are demonstrated. The impacts of the involved flow parameters are drawn in graphs and tabulated forms. The inclination effect shows an inverse relation with the velocity field. Moreover, the velocity profile increases with the growth of the buoyancy effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.