Background: The study on the control and treatment of type 2 diabetes mellitus, as a growing metabolic disease in the world, is important. Oxidative stress and reactive oxygen species in uncontrolled diabetes can play a role in the consequences of diabetes such as neuropathy and nephropathy. The presence of minerals as bioactive compounds in the diet and their role in antioxidant enzymes can play a role in reducing the oxidative effects of diabetes. Electron beam therapy as an adjunct method can be effective in reducing free radicals and oxidative stress. Objective: The main purpose of this study was to investigate the effect of electron beam therapy on glucose, oxidative markers and some minerals, as bioactive compound, in people with type 2 diabetes mellitus. Methods: The study was performed on 30 volunteers with type 2 diabetes mellitus and 30 healthy volunteers as a control group. Serum samples from diabetic and control groups were assayed for glucose, hydrogen peroxide, reactive oxygen species and minerals such as iron, zinc, copper, magnesium and selenium binding protein before and after electron beam irradiation. ATP levels and NAD/NADH ratio were also evaluated. The mentioned parameters were measured by ELISA and calorimetric methods according to the relevant kit protocol. Electron beam therapy was performed using a linear accelerator. The used amount of energy was 9 MeV. The depth of treatment was 1.5 cm.Results: The results of electron beam therapy showed that the concentrations of glucose, reactive oxygen species, hydrogen peroxide, copper and iron were significantly (P value < 0.05) reduced in diabetics. Zinc levels in this group increased significantly (P value < 0.05). In control group, ATP levels were significantly (P value < 0.05) increased by electron beam therapy.Conclusion: According to the obtained results, electron beam therapy can be effective in reduction of oxidation indexes and thus reducing oxidative stress. Electron beam therapy can be effective in reducing the consequences of diabetes mellitus. Keywords: Electron beam therapy, Oxidative stress, Mineral, Type 2 diabetes mellitus
Background: The main purpose of this study was to investigate whether or not electron beam therapy (EBT) was an effective method in terms of moderating oxidative stress by reducing free radicals in BALB/c mice with type 1 diabetes mellitus.Methods: The study was performed on thirty BALB/c mice in three groups including normal control, diabetic control, and EBT treated. Before studying the effect of electron beam on the studied groups, optimal level of constant source-to-surface distance, as well as the effects of EBT on glutathione reductase (GR) structure and function were determined. After studying the structure and the function of GR protein with three methods including fluorometry, circular dichroism (CD), and activity assay methods, SSD 100 was selected for EBT. Glucose, advanced glycation end-products, GR, oxidative stress factors such as hydrogen peroxide, malondialdehyde, advanced oxidation protein products, oxidized low-density lipoprotein, and inflammatory factors were measured in the serum of all groups.Results: The results of in vitro study showed that electron beam therapy could increase glutathione reductase activity, which was not significant. Also, the results were compared between and within groups using one-way analysis of variance. Significant differences were observed for all variables measured between the normal control group and the other groups (P < 0.05). There was also no significant difference in blood glucose levels between the electron beam therapy treated group and the diabetic one (P > 0.05).Conclusion: The results suggested that electron beam therapy could be effective in reducing free radicals and oxidative stress. Electron beam therapy, as a complementary method, might aid in moderating the complications of diabetes mellitus.Keywords: Diabetes mellitus, Electron beam, Inflammatory factors, Oxidative stress
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.