This article presents a crystal plasticity methodology to evaluate the AA1050 sheet formability. In order to determine the orientation distribution of the crystals, initial texture of the material is measured through X-ray diffraction technique. Also, the stress–strain behavior of the material is determined by performing tensile test. In order to simulate the path-dependent crystal plasticity behavior of body-centered cubic crystal structures, a UMAT subroutine that employs the rate-dependent crystal plasticity model along with the power law hardening was developed previously by the authors and linked to the finite element software ABAQUS. This subroutine was further developed to simulate face-centered cubic crystal structures. The second-order derivative of sheet thickness variations with respect to time is considered as the instability factor, and forming limit diagram of the material is predicted. In order to assess the validity of formability prediction results for face-centered cubic materials, forming limit diagram of AA1050 sheet is also experimentally extracted by conducting hemi-spherical punch test. It is observed that the predicted forming limit diagram is in agreement with the experimental results. Finally, the prediction accuracy in different regions of forming limit diagram is discussed and some suggestions for further improving the accuracy are made.
Ideal orientations are one of the material characteristics of the applied mode of deformation. The transfer of material texture to orientations near specific ideal orientations can improve the mechanical properties of the material. In this paper, we focus on the determination of ideal orientations of BCC crystals under the equibiaxial tension mode of deformation. To do this, an Euler space scanning method based on a crystal plasticity approach is presented. In this method some initial orientations which are evenly spaced in the Euler space are selected and their evolutions into the ideal orientations are tracked. The loading is applied incrementally until all of the lattice spin components become permanently zero. The rate sensitive crystal plasticity model with power law hardening is employed and the resulting nonlinear system of equations is solved by the modified Newton–Raphson method. In order to verify the simulation results, the ideal orientations of rolling textures are calculated. A comparison of the obtained results with the existing experimental data demonstrates that all of the reported ideal orientations are satisfactorily predicted. Afterward, preferred orientations for equibiaxial tension mode of deformation which have not been reported previously in the literature are calculated. This analysis resulted in eight fibers EF1–EF8 together with a plane of ideal orientations for equibiaxial tension loading. The effects of symmetry of the crystal structure and loading on the obtained ideal orientations are finally discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.