Successful treatment of cancer remains a challenge, due to the unique pathophysiology of solid tumors, and the predictable emergence of resistance. Traditional methods for cancer therapy including radiotherapy, chemotherapy, and immunotherapy all have their own limitations. A novel approach is bacteriotherapy, either used alone, or in combination with conventional methods, has shown a positive effect on regression of tumors and inhibition of metastasis. Bacteria‐assisted tumor‐targeted therapy used as therapeutic/gene/drug delivery vehicles has great promise in the treatment of tumors. The use of bacteria only, or in combination with conventional methods was found to be effective in some experimental models of cancer (tumor regression and increased survival rate). In this article, we reviewed the major advantages, challenges, and prospective directions for combinations of bacteria with conventional methods for tumor therapy.
Introduction:Infections caused by β-lactamase-producing gram-negative bacteria, such as Klebsiella pneumoniae, are increasing globally with high morbidity and mortality. The aim of the current study was to determine antimicrobial susceptibility patterns and the prevalence of antibiotic resistance genes (β-lactamase and integron genes) using multiplex PCR. Methods: One-hundred K. pneumoniae isolates were collected from different clinical samples. Antibiotic susceptibility testing was performed with thirteen different antibiotics. Multiplex-PCR was used to detect β-lactamase (bla TEM , bla CTX-M, bla SHV, bla VEB , bla PER , bla GES , bla VIM, bla IMP, bla OXA , and bla KPC ) and integron genes (int I, int II, and int III). Results: The highest and lowest rate of resistance was exhibited against amikacin (93%) and imipenem (8%), respectively. The frequency of β-lactamase-positive K. pneumoniae was 37%, and the prevalence of the bla TEM , bla CTX-M, bla SHV, bla VEB , bla PER , bla GES , bla VIM, bla IMP, bla OXA , and bla KPC genes was 38%, 24%, 19%, 12%, 6%, 11%, 33%, 0%, 28%, and 23%, respectively. Of the 100 isolates, eight (8%) were positive for class I integrons; however, class II and III integrons were not detected in any of the strains. Conclusions: These results indicate co-carriage of a number of β-lactamase genes and antibiotic resistance integrons on the same plasmids harboring multi-drug resistance genes. It seems that these properties help to decrease treatment complications due to resistant bacterial infections by rapid detection, infection-control programs and prevention of transmission of drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.