We propose a direct method to determine absorption anisotropy of colloidal quantum rods. In this method, the rods are aligned in solution by using an alternating electric field and we measure simultaneously the resulting average change in absorption. We show that a frequency window for the electric field exists in which the change in absorbance as a function of field strength can be analyzed in terms of the quantum-rod dipole moment and the absorption coefficient for light that is polarized parallel or perpendicular to the long axis of the rod. The approach is verified by measuring the absorbance change of CdSe rods at 400 nm as a function of field strength, where we demonstrate excellent agreement between experiment and theory. This enables us to propose improved values for the CdSe quantum-rod extinction coefficient. Next, we analyze CdSe/CdS dot-in-rods and find that the absorption of the first exciton transition is fully anisotropic, with a vanishing absorption coefficient for light that is polarized perpendicularly to the long axis of the rods.
Transient current measurements are used to characterize a wide variety of charge carriers in nonpolar liquids. The transient current method allows us to obtain both the concentration and mobility of charge carriers and therefore also the hydrodynamic radius using Stokes' law. In this article, five different surfactants in dodecane are investigated: OLOA11K, Solsperse13940, Span80, Span85, and AOT. We show that different types of currents are observed depending on the size of the inverse micelles. For large inverse micelles such as for OLOA11K, Solsperse13940, and Span80, the measurement of the transient current is straightforward because of the low steady-state current level. However, for small inverse micelles such as AOT and Span85, the current from the generation of charges is much larger such that high voltages, a small distance between the electrodes, and dielectric coatings on the electrodes are required to measure the signal related to the initially present charged inverse micelles. The estimated hydrodynamic radii of AOT and Span85, the two smallest inverse micelles, are in good agreement with the values reported in the literature. The comparison of the transient currents with simulations indicates that the dynamics of the charge transport are well-understood.
Surfactant molecules in a non-polar liquid form charged and uncharged inverse micelles.
When a potential difference is applied over the mixture, the charged inverse micelles drift
towards the electrode with the opposite polarity. The motion of charges is associated with a
transient current, which can be measured in an external circuit. In this paper, transient
currents and steady state charge densities are described analytically in different ranges of
parameter values (applied voltage, charge density, device thickness, mobility,...). The generation of additional charged inverse micelles and the electrophoretic motion
of colloidal particles in the mixture is modelled and measured experimentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.