This study describes a protocol for the direct manufacturing of a customized titanium mesh using CAD-CAM procedures and rapid prototyping to augment maxillary bone and minimize surgery when severe atrophy or post-oncological deformities are present. Titanium mesh and particulate autogenous plus bovine demineralised bone were planned for patient rehabilitation. Bone augmentation planning was performed using the pre-op CT data set in relation to the prosthetic demands, minimizing the bone volume to augment at the minimum necessary for implants. The containment mesh design was used to prototype the 0.6 mm thickness customized titanium mesh, by direct metal laser sintering. The levels of regenerated bone were calculated using the post-op CT data set, through comparison with the pre-op CT data set. The mean vertical height difference of the crestal bone was 2.57 mm, while the mean buccal-palatal dimension of thickness difference was 3.41 mm. All planned implants were positioned after an 8 month healing period using two-step implant surgery, and finally restored with a partial fixed prosthesis. We present a viable and reproducible method to determine the correct bone augmentation prior to implant placement and CAD-CAM to produce a customized direct laser-sintered titanium mesh that can be used for bone regeneration.
This paper describes a new protocol for mandibular reconstruction. Computer-aided design/computer-aided manufacturing (CAD/CAM) technology was used to manufacture custom-made cutting guides for tumor ablation and reconstructive plates to support fibula free flaps. CT scan data from a patient with an odontogenic keratocyst on the left mandibular ramus were elaborated to produce a virtual surgical plan of mandibular osteotomy in safe tissue for complete ramus resection. The CAD/CAM procedure was used to construct a customized surgical device composed of a cutting guide and a titanium reconstructive bone plate. The cutting guide allowed the surgeon to precisely transfer the virtual planned osteotomy into the surgical environment. The bone plate, including a custom-made anatomical condylar prosthesis, was designed using the outer surface of the healthy side of the mandible to obtain an ideal contour and avoid the bone deformities present on the side affected by the tumor. Operation time was reduced in the demolition and reconstruction phases. Functional and aesthetic outcomes allowed patients to immediately recover their usual appearance and functionality. This new protocol for mandibular reconstruction using CAD/CAM to construct custom-made guides and plates may represent a viable way to reproduce the patient's anatomical contour, give the surgeon better procedural control, and reduce operation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.