This study describes a protocol for the direct manufacturing of a customized titanium mesh using CAD-CAM procedures and rapid prototyping to augment maxillary bone and minimize surgery when severe atrophy or post-oncological deformities are present. Titanium mesh and particulate autogenous plus bovine demineralised bone were planned for patient rehabilitation. Bone augmentation planning was performed using the pre-op CT data set in relation to the prosthetic demands, minimizing the bone volume to augment at the minimum necessary for implants. The containment mesh design was used to prototype the 0.6 mm thickness customized titanium mesh, by direct metal laser sintering. The levels of regenerated bone were calculated using the post-op CT data set, through comparison with the pre-op CT data set. The mean vertical height difference of the crestal bone was 2.57 mm, while the mean buccal-palatal dimension of thickness difference was 3.41 mm. All planned implants were positioned after an 8 month healing period using two-step implant surgery, and finally restored with a partial fixed prosthesis. We present a viable and reproducible method to determine the correct bone augmentation prior to implant placement and CAD-CAM to produce a customized direct laser-sintered titanium mesh that can be used for bone regeneration.
Variations in alpha rhythm have a significant role in perception and attention. Recently, alpha decrease has been associated with externally directed attention, especially in the visual domain, whereas alpha increase has been related to internal processing such as mental arithmetic. However, the role of alpha oscillations and how the different components of a task (processing of external stimuli, internal manipulation/representation, and task demand) interact to affect alpha power are still unclear. Here, we investigate how alpha power is differently modulated by attentional tasks depending both on task difficulty (less/more demanding task) and direction of attention (internal/external). To this aim, we designed two experiments that differently manipulated these aspects. Experiment 1, outside Virtual Reality (VR), involved two tasks both requiring internal and external attentional components (intake of visual items for their internal manipulation) but with different internal task demands (arithmetic vs. reading). Experiment 2 took advantage of the VR (mimicking an aircraft cabin interior) to manipulate attention direction: it included a condition of VR immersion only, characterized by visual external attention, and a condition of a purely mental arithmetic task during VR immersion, requiring neglect of sensory stimuli. Results show that: (1) In line with previous studies, visual external attention caused a significant alpha decrease, especially in parieto-occipital regions; (2) Alpha decrease was significantly larger during the more demanding arithmetic task, when the task was driven by external visual stimuli; (3) Alpha dramatically increased during the purely mental task in VR immersion, whereby the external stimuli had no relation with the task. Our results suggest that alpha power is crucial to isolate a subject from the environment, and move attention from external to internal cues. Moreover, they emphasize that the emerging use of VR associated with EEG may have important implications to study brain rhythms and support the design of artificial systems.
In regenerative medicine, 3D scaffolds are used to sustain the regeneration of tissues in removed or damaged parts of the human body. As such practices are being widely experimented in clinical applications, the design, the materials and the manufacturing process to obtain efficient 3D biocompatible lattices are being significantly investigated. Nevertheless, most of the proposed designs are based on regular 3D shapes obtained from the repetition of unit cells disposed in a three-dimensional array. This approach does not exploit the whole potential of Computer Aided Design tools coupled with manufacturing capabilities for freeform shapes. In this paper, we propose a method to model biomimetic lattices controlling the porosity and the pores size of scaffolds to be integrated with the anatomical shape of the defect. The method has been implemented in bone tissue case study and implements a Generative Design approach based on Voronoi diagrams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.